1.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
Jun Sung MOON ; Shinae KANG ; Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; Yoon Ju SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Jaehyun BAE ; Eonju JEON ; Ji Min KIM ; Seon Mee KANG ; Jung Hwan PARK ; Jae-Seung YUN ; Bong-Soo CHA ; Min Kyong MOON ; Byung-Wan LEE
Diabetes & Metabolism Journal 2024;48(4):546-708
6.Contemporary Statistics of Acute Ischemic Stroke and Transient Ischemic Attack in 2021: Insights From the CRCS-K-NIH Registry
Do Yeon KIM ; Tai Hwan PARK ; Yong-Jin CHO ; Jong-Moo PARK ; Kyungbok LEE ; Minwoo LEE ; Juneyoung LEE ; Sang Yoon BAE ; Da Young HONG ; Hannah JUNG ; Eunvin KO ; Hyung Seok GUK ; Beom Joon KIM ; Jun Yup KIM ; Jihoon KANG ; Moon-Ku HAN ; Sang-Soon PARK ; Keun-Sik HONG ; Hong-Kyun PARK ; Jeong-Yoon LEE ; Byung-Chul LEE ; Kyung-Ho YU ; Mi Sun OH ; Dong-Eog KIM ; Dong-Seok GWAK ; Soo Joo LEE ; Jae Guk KIM ; Jun LEE ; Doo Hyuk KWON ; Jae-Kwan CHA ; Dae-Hyun KIM ; Joon-Tae KIM ; Kang-Ho CHOI ; Hyunsoo KIM ; Jay Chol CHOI ; Joong-Goo KIM ; Chul-Hoo KANG ; Sung-il SOHN ; Jeong-Ho HONG ; Hyungjong PARK ; Sang-Hwa LEE ; Chulho KIM ; Dong-Ick SHIN ; Kyu Sun YUM ; Kyusik KANG ; Kwang-Yeol PARK ; Hae-Bong JEONG ; Chan-Young PARK ; Keon-Joo LEE ; Jee Hyun KWON ; Wook-Joo KIM ; Ji Sung LEE ; Hee-Joon BAE ;
Journal of Korean Medical Science 2024;39(34):e278-
This report presents the latest statistics on the stroke population in South Korea, sourced from the Clinical Research Collaborations for Stroke in Korea-National Institute for Health (CRCS-K-NIH), a comprehensive, nationwide, multicenter stroke registry. The Korean cohort, unlike western populations, shows a male-to-female ratio of 1.5, attributed to lower risk factors in Korean women. The average ages for men and women are 67 and 73 years, respectively.Hypertension is the most common risk factor (67%), consistent with global trends, but there is a higher prevalence of diabetes (35%) and smoking (21%). The prevalence of atrial fibrillation (19%) is lower than in western populations, suggesting effective prevention strategies in the general population. A high incidence of large artery atherosclerosis (38%) is observed, likely due to prevalent intracranial arterial disease in East Asians and advanced imaging techniques.There has been a decrease in intravenous thrombolysis rates, from 12% in 2017–2019 to 10% in 2021, with no improvements in door-to-needle and door-to-puncture times, worsened by the coronavirus disease 2019 pandemic. While the use of aspirin plus clopidogrel for noncardioembolic stroke and direct oral anticoagulants for atrial fibrillation is well-established, the application of direct oral anticoagulants for non-atrial fibrillation cardioembolic strokes in the acute phase requires further research. The incidence of early neurological deterioration (13%) and the cumulative incidence of recurrent stroke at 3 months (3%) align with global figures. Favorable outcomes at 3 months (63%) are comparable internationally, yet the lack of improvement in dependency at 3 months highlights the need for advancements in acute stroke care.
7.Incidence, Morbidity, and Mortality of Achalasia: A Nationwide, Population-Based Cohort Study in South Korea
Ga Hee KIM ; Hyungchul PARK ; Kee Wook JUNG ; Min-Ju KIM ; Ye-Jee KIM ; Ji Min LEE ; Bong Eun LEE ; Yang Won MIN ; Jeong Hwan KIM ; Hee Kyong NA ; Ji Yong AHN ; Jeong Hoon LEE ; Do Hoon KIM ; Kee Don CHOI ; Ho June SONG ; Gin Hyug LEE ; Hwoon-Yong JUNG ; Hyun Jin KIM ;
Gut and Liver 2023;17(6):894-904
Background/Aims:
Although an association between achalasia and esophageal cancer has been reported, whether achalasia confers a substantial increase in mortality is unknown. Moreover, the causes of death related to achalasia have not been investigated. We performed this nationwide, population-based cohort study on achalasia because no such study has been performed since the introduction of high-resolution manometry in 2008.
Methods:
This study was performed using data extracted from the Korean National Health Insurance Service database, covering a 9-year period from 2009 to 2017. Control participants without a diagnostic code for achalasia were randomly selected and matched by sex and birth year at a case-to-control ratio of 1:4. Data on the cause of death from Statistics Korea were also analyzed.
Results:
The overall incidence of achalasia was 0.68 per 100,000 person-years, and the prevalence was 6.46 per 100,000 population. Patients with achalasia (n=3,063) had significantly higher adjusted hazard ratio (aHR) for esophageal cancer (aHR, 3.40; 95% confidence interval [CI], 1.25 to 9.22; p=0.017), pneumonia (aHR, 2.30; 95% CI, 1.89 to 2.81; p<0.001), aspiration pneumonia (aHR, 3.92; 95% CI, 2.38 to 6.48; p<0.001), and mortality (aHR, 1.68; 95% CI, 1.44 to 1.94; p<0.001). Esophageal cancer carried the highest mortality risk (aHR, 8.82; 95% CI, 2.35 to 33.16; p=0.001), while pneumonia had the highest non-cancer mortality risk (aHR, 2.28; 95% CI, 1.31 to 3.96; p=0.004).
Conclusions
In this nationwide study, achalasia was associated with increased risk of mortality.Esophageal cancer and pneumonia were the most common comorbidities and the major causes of death in patients with achalasia.
8.Osteoporosis Is Associated with an Increased Risk of Colorectal Adenoma and High-Risk Adenoma: A Retrospective, Multicenter, Cross-Sectional, Case-Control Study
Ji Hyung NAM ; Myung KOH ; Hyoun Woo KANG ; Kum Hei RYU ; Dong Seok LEE ; Su Hwan KIM ; Dong Kee JANG ; Ji Bong JEONG ; Ji Won KIM ; Kook Lae LEE ; Dong Jun OH ; Yun Jeong LIM ; Seong-Joon KOH ; Jong Pil IM ; Joo Sung KIM
Gut and Liver 2022;16(2):269-276
Background/Aims:
The protective effects of vitamin D and calcium on colorectal neoplasms are known. Bone mineral density (BMD) may be a reliable biomarker that reflects the long-term anticancer effect of vitamin D and calcium. This study aimed to evaluate the association between BMD and colorectal adenomas including high-risk adenoma.
Methods:
A multicenter, cross-sectional, case-control study was conducted among participants with average risk of colorectal cancer who underwent BMD and screening colonoscopy between 2015 and 2019. The main outcome was the detection of colorectal neoplasms. The variable under consideration was low BMD (osteopenia/osteoporosis). The logistic regression model included baseline demographics, components of metabolic syndrome, fatty liver disease status, and aspirin and multivitamin use.
Results:
A total of 2,109 subjects were enrolled. The mean age was 52.1±10.8 years and 42.6% were male. The adenoma detection rate was 43%. Colorectal adenoma and high-risk adenoma were both more prevalent in subjects with low BMD than those with normal BMD (48.2% vs 38.8% and 12.1% vs 9.1%). In the univariate analysis, old age, male sex, smoking, metabolic components, fatty liver, and osteoporosis were significantly associated with the risk of adenoma and high-risk adenoma. In the multivariate analysis, osteoporosis was independently associated with risk of colorectal adenoma (odds ratio [OR], 1.65; 95% confidence interval [CI], 1.11 to 2.46; p=0.014) and high-risk adenoma (OR, 1.94; 95% CI, 1.14 to 3.29; p=0.014).
Conclusions
Osteoporosis is an independent risk factor of colorectal adenoma and high-risk adenoma
9.Primary Tumor Suppression and Systemic Immune Activation of Macrophages through the Sting Pathway in Metastatic Skin Tumor
Chun-Bong SYNN ; Dong Kwon KIM ; Jae Hwan KIM ; Youngseon BYEON ; Young Seob KIM ; Mi Ran YUN ; Ji Min LEE ; Wongeun LEE ; Eun Ji LEE ; Seul LEE ; You-Won LEE ; Doo Jae LEE ; Hyun-Woo KIM ; Chang Gon KIM ; Min Hee HONG ; June Dong PARK ; Sun Min LIM ; Kyoung-Ho PYO
Yonsei Medical Journal 2022;63(1):42-55
Purpose:
Agonists of the stimulator of interferon genes (STING) play a key role in activating the STING pathway by promoting the production of cytokines. In this study, we investigated the antitumor effects and activation of the systemic immune response of treatment with DMXAA (5,6-dimethylxanthenone-4-acetic acid), a STING agonist, in EML4-ALK lung cancer and CT26 colon cancer.
Materials and Methods:
The abscopal effects of DMXAA in the treatment of metastatic skin nodules were assessed. EML4-ALK lung cancer and CT26 colon cancer models were used to evaluate these effects after DMXAA treatment. To evaluate the expression of macrophages and T cells, we sacrificed the tumor-bearing mice after DMXAA treatment and obtained the formalin-fixed paraffin-embedded (FFPE) tissue and tumor cells. Immunohistochemistry and flow cytometry were performed to analyze the expression of each FFPE and tumor cell.
Results:
We observed that highly infiltrating immune cells downstream of the STING pathway had increased levels of chemokines after DMXAA treatment. In addition, the levels of CD80 and CD86 in antigen-presenting cells were significantly increased after STING activation. Furthermore, innate immune activation altered the systemic T cell-mediated immune responses, induced proliferation of macrophages, inhibited tumor growth, and increased numbers of cytotoxic memory T cells. Tumor-specific lymphocytes also increased in number after treatment with DMXAA.
Conclusion
The abscopal effect of DMXAA treatment on the skin strongly reduced the spread of EML4-ALK lung cancer and CT26 colon cancer through the STING pathway and induced the presentation of antigens.
10.Analysis of Correlation Between Cognitive Function and Depressive Symptoms of the Elderly in Community
Hyeon CHO ; Hyeon CHO ; Gi Hwan BYUN ; Gi Hwan BYUN ; Sung Ok KWON ; Sung Ok KWON ; Ji Won HAN ; Ji Won HAN ; Jong bin BAE ; Jong bin BAE ; Hee won YANG ; Hee won YANG ; Eunji LIM ; Eunji LIM ; Ki Woong KIM ; Ki Woong KIM ; Kyung Phil KWAK ; Kyung Phil KWAK ; Bong-Jo KIM ; Bong-Jo KIM ; Shin Gyeom KIM ; Shin Gyeom KIM ; Jeong Lan KIM ; Jeong Lan KIM ; Seok Woo MOON ; Seok Woo MOON ; Joon Hyuk PARK ; Joon Hyuk PARK ; Jong Chul YOUN ; Jong Chul YOUN ; Dong Young LEE ; Dong Young LEE ; Dong Woo LEE ; Dong Woo LEE ; Seok Bum LEE ; Seok Bum LEE ; Jung Jae LEE ; Jung Jae LEE ; Hyun-Ghang JEONG ; Hyun-Ghang JEONG ; Tae Hui KIM ; Tae Hui KIM ; Seung-Ho RYU ; Seung-Ho RYU ; Jin Hyeong JHOO ; Jin Hyeong JHOO
Journal of Korean Geriatric Psychiatry 2021;25(1):49-55

Result Analysis
Print
Save
E-mail