1.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
2.Bone tissue engineering scaffolds.
Liru FANG ; Wenjian WENG ; Ge SHEN ; Gaorong HAN ; J D SANTOS ; Peiyi DU
Journal of Biomedical Engineering 2003;20(1):148-152
Bone tissue engineering may provide an alternative to the repairs to skeletal defects resulting from disease, trauma or surgery. Scaffold has played an important role in bone tissue engineering, which functions as the architecture for bone in growth. In this paper, the authors gave a brief introduction about the requirement of bone tissue engineering scaffold, the key of the design of scaffolds and the current research on this subject.
Biodegradation, Environmental
;
Bioprosthesis
;
Bone Substitutes
;
chemistry
;
metabolism
;
Mechanics
;
Surface Properties
;
Tissue Engineering
;
methods
3.Development of biodegradable magnesium-based biomaterials.
Shengfa ZHU ; Li XU ; Nan HUANG
Journal of Biomedical Engineering 2009;26(2):437-451
Magnesium is a macroelement which is indispensable to human bodies. As a lightweight metal with high specific strength and favorable biocompatibility, magnesium and its alloys have been introduced in the field of biomedical materials research and have a broad application prospect. It is possible to develop new type of biodegradable medical magnesium alloys by use of the poor corrosion resistance of magnesium. Bioabsorbable magnesium stents implanted in vivo could mechanically support the vessel in a short term, effectly prevent the acute coronary occlusion and in-stent restenosis, and then be gradully biodegraded and completely absorbed in a long term. Osteoconductive bioactivity in magnesium-based alloys could promote the apposition growth of bone tissue. This paper reviews the progress of magnesium and its alloys applied in bone tissue and cardiovascular stents, and the prospect of the future research of magnesium-based biomaterials is discussed.
Absorbable Implants
;
Alloys
;
chemistry
;
metabolism
;
Biocompatible Materials
;
chemistry
;
Bone Substitutes
;
chemistry
;
metabolism
;
Humans
;
Magnesium
;
chemistry
;
metabolism
;
Stents
4.Research on bioactivity of magnesium and its alloys.
Journal of Biomedical Engineering 2009;26(3):685-687
Magnesium is an essential microelement which is not harmful to human body. As a light-weight metal with properties similar to natural bone, magnesium material possesses the characteristics of its degradability, little biotoxicity, as well as its regulatory strength and controllable degradation-speed. After the tissue has healed sufficiently, the burden of a second surgical procedure can be avoided. Therefore, there is need of investigation on the possible use of magnesium and its alloys as medical biomaterials, and the study of its bioactivity is the foundation of further application. This article reviews the bioactivity of magnesium and its alloys.
Absorbable Implants
;
Alloys
;
chemistry
;
metabolism
;
Biocompatible Materials
;
chemistry
;
Bone Substitutes
;
chemistry
;
metabolism
;
Humans
;
Magnesium
;
chemistry
;
metabolism
;
Prostheses and Implants
5.A review of research progress on biological effects about nanometer scaffold for bone tissue engineering.
Bo LI ; Huawei HE ; Xiaoling LIAO ; Hongsong FAN ; Xingdong ZHANG
Journal of Biomedical Engineering 2011;28(5):1035-1039
Quite a few orthopedics experts have fabricated some novel bone scaffolds with nanotechnology and have carried out some researches on nano-biological effects. The study of the biological effects about nano-biomaterials can facilitate the understanding of the interaction between the biomaterials and the organism, and provide research ideas and direction to construct new biomaterials with physiological function. To better understand the interaction of nano biomaterials with protein, cells and bio-security, this review presents recent advances of biological effects about nano scaffold for bone tissue engineering.
Biocompatible Materials
;
metabolism
;
Bone Substitutes
;
Bone and Bones
;
Humans
;
Nanostructures
;
Nanotechnology
;
Surface Properties
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
6.Biodegradation of synthetic bioglasses with different crystallinity in vitro.
Yumei ZHANG ; Yurong CAI ; Qintao WANG ; Yimin ZHAO ; F MONCHAU ; A LEFEVRE ; H F HILDEBRAND
Journal of Biomedical Engineering 2005;22(5):990-994
SG600, SG900 and SG1100 were synthesized by the sol-gel method. Further treatments with increasing temperatures influenced and determined the crystallization degree of the material. Primary cultured osteoclasts were incubated for 4h and 48h on samples. Osteoclast actin labeling was examined by cytochemical staining. The concentrations of Ca and P in culture medium were quantified by colorimetric methods. SEM examined osteoclast morphology and resorption lacuna. Actin staining revealed on all three materials the typical adhesion contact ring. The Ca concentration in the culture medium of SG600 was significantly higher than that in control medium, SG900 and SG1100. Ca and P concentrations were always higher in culture media with the presence of osteoclasts. Morphological studies by scanning electron microsopy(SEM) showed a good adhesion behavior of osteoclasts on all three samples. Well-developed and deep resorption lacunae appearing after the osteoclastic resorption action were detected on all three samples. The synthetic bioglasses with different crystallizations caused different solubility, which seemed to have little effect on the osteoclast resorption behavior. The results of morphological studies on osteoclasts and resorption lacunae clearly demonstrate that the synthetic bioglasses are easily resorbed in vitro by osteoclasts.
Absorbable Implants
;
Biocompatible Materials
;
Biodegradation, Environmental
;
Bone Substitutes
;
Cells, Cultured
;
Ceramics
;
Crystallization
;
Osteoclasts
;
cytology
;
metabolism
;
ultrastructure
;
Phase Transition
7.The construction and investigation of PLGA artificial bone by biomimetic mineralization.
Ming, ZHAO ; Qixin, ZHENG ; Jinguang, WANG ; Yuntao, WANG ; Jie, HAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2005;25(6):687-9
To modify the surface property of poly lactide-co-glycolide (PLGA) by biomimetic mineralization to construct a new kind of artificial bone. PLGA films and 3-diamensional (3-D) porous scaffolds hydrolyzed in alkaline solution were minerilized in SBF for 14 days. The morphology and composition of the mineral grown on PLGA were analyzed with SEM, FTIR and XRD. The porosity of the scaffolds was detected by using the liquid displacement method. The compressive strength of the scaffolds was detected by using a Shimadzu universal mechanic tester. An obvious mineral coating was detected on the surface of films and scaffolds. The main component of the mineral was carbonated hydroxyapatite (HA) similar to the major mineral component of bone tissues. The porosity of the un-mineralized and mineralized porous scaffolds was (84.86 +/- 8.52) % and (79.70 +/- 7.70) % respectively. The compressive strength was 0.784 +/- 0.156 N/mm2 in un-mineralized 3-D porous PLGA and 0.858 +/- 0.145 N/mm2 in mineralized 3-D porous PLGA. There were no significant differences between the mineralized and un-mineralized scaffolds (P > 0.05) in porosity and biomechanics. Biomimetic mineralization is a suitable method to construct artificial bone.
Biocompatible Materials
;
Bone Substitutes
;
Calcification, Physiologic
;
Durapatite/metabolism
;
Lactic Acid/*chemistry
;
Polyglycolic Acid/*chemistry
;
Polymers/*chemistry
;
Porosity
;
Tissue Engineering
8.Expression of BMP4 mRNA in the in-vivo tissue engineering bone.
Journal of Biomedical Engineering 2008;25(3):589-592
This study was aimed to compare the expression of BMP4 mRNA in the in-vivo tissue engineering bone constructed with Ca/P ceramics against the expression of BMP4 mRNA in the naturally healing bone. 20 porous Ca/P ceramics cylinders with Phi 5 mm x 8 mm were made and implanted into the dorsal muscles of 5 dogs. As control, one molar tooth was pulled out from each dog to create bone defect for the naturally healing bone at the same time. The specimens and the naturally healing bone were harvested at 1, 2, 4, 12 and 24 weeks post-implantation. After RNA extraction and reverse transcription, bone morphogenetic protein 4 (BMP4) and GAPDH mRNA were detected by real-time quantitative polymerase chain reaction (PCR) method. The results showed that the expression level of BMP4 mRNA of the in-vivo tissue engineering bone constructed with Ca/P ceramics was higher than that of the naturally healing bone in the period of experiment. However, the in-vivo tissue engineering bone had the same chronological order of BMP mRNA expression that the naturally healing bone did. As a bone substitute analogous to autologous bone, the in-vivo tissue engineering bone constructed with Ca/P ceramics has the potential for clinical application.
Animals
;
Bone Morphogenetic Protein 4
;
genetics
;
metabolism
;
Bone Substitutes
;
chemistry
;
Calcium Phosphates
;
chemistry
;
Ceramics
;
chemistry
;
Dogs
;
Humans
;
Implants, Experimental
;
RNA, Messenger
;
genetics
;
metabolism
;
Tissue Engineering
9.Growth activity of osteoblast on a novel strontium incorporated calcium sulfate.
Chun-Li ZHANG ; Yan-Tao ZHAO ; Shu-Xun HOU ; Hong-Bin ZHONG ; Zhong-Hai LI ; Yan LIU ; Ying ZHOU
China Journal of Orthopaedics and Traumatology 2014;27(5):415-418
OBJECTIVETo investigate the growth activity of osteoblast on a novel strontium incorporated calcium sulfate and make comparison with normal calcium sulfate material.
METHODSOsteoblast was inoculated on samples and cell proliferation was measured on the 1st, 3rd, 5th days, and the activities of ALP and osteocalcin were observed on the 5th day. And microcosmic morphology of osteoblast was observed by scanning electron microscopy(SEM).
RESULTSOsteoblast grows robustly on tested material. Cell quantity on the surface of novel material was obviously higher than normal calcium sulfate material (P < 0.05). The activity of ALP and osteocalcin on novel material was 57.8% and 40.2% higher than on normal calcium sulfate material respectively (P < 0.05). On strontium incorporated surface, osteoblast spread well. Cells were polygonal with abundant cytoplasm and the morphology was active.
CONCLUSIONStrontium incorporated calcium sulfate can sustain robust growth activity of osteoblast, which is promising to be used for bone substitute materials.
3T3 Cells ; Alkaline Phosphatase ; metabolism ; Animals ; Bone Substitutes ; chemistry ; pharmacology ; Calcium Sulfate ; chemistry ; pharmacology ; Cell Proliferation ; drug effects ; Mice ; Osteoblasts ; cytology ; drug effects ; metabolism ; Osteocalcin ; metabolism ; Strontium ; chemistry
10.Mineralization of PLGA-ASP-PEG modified with RGD-containing peptide.
Yulin SONG ; Qixin ZHENG ; Jianfeng ZHENG
Journal of Biomedical Engineering 2009;26(5):1056-1059
The RGD-containing peptide was used to modify the surface of porous PLGA-[ASP-PEG], and was incubated in the modified simulated body fluid (mSBF) for two weeks. The mineralization of PLGA-[ASP-PEG] was explored. The active peptide was used to modify PLGA-[ASP-PEG] through cross-linker (Sulfo-LC-SPDP), characterized by X-ray photoelectron spectroscopy (XPS) the peptide-modified PLGA-[ASP-PEG] (Experiment group, EG) and PLGA-[ASP-PEG] without modification (Control group, CG) were all incubated in mSBF for two weeks, confirmed by observation of Scanning electron microscope(SEM) and measurements of Energy dispersive analysis system of X-ray (EDS) and X-ray diffractometry (XRD). XPS indicated that the binding energy of sulphur in EG was 164eV, and the ratio of carbon to sulphur in EG was 99.746 : 0.1014, however, sulphur was not detected in CG; SEM analysis demonstrated that the mineralization layers were more consecutive and compact in EG than in CG. The results of EDS and XRD indicated that the main component of mineral was hydroxyapatite, and the ratio of Ca/P was 1.60 in EG, and 1.52 in CG. RGD-containing peptide provided enough functional groups for mineralization; the mineralized peptide- modified PLGA-[ASP-PEG] possessed the bonelike microstructure.
Biocompatible Materials
;
chemistry
;
Bone Substitutes
;
Bone and Bones
;
metabolism
;
Calcification, Physiologic
;
Lactic Acid
;
chemistry
;
Oligopeptides
;
chemistry
;
Osteogenesis
;
drug effects
;
Peptides
;
chemical synthesis
;
pharmacology
;
Polyglycolic Acid
;
chemistry
;
Surface Properties