1.Mechanism of Regulating MK2 to Improve Bone Marrow Inflammatory Damage after Hematopoietic Stem Cell Transplantation.
Zhao-Hui WANG ; Bo LONG ; Yu-Han WANG ; Zhi-Ting LIU ; Zi-Jie XU ; Shuang DING
Journal of Experimental Hematology 2025;33(5):1453-1460
OBJECTIVE:
To investigate the role of MK2 inhibitor MMI-0100 on inflammatory response after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and related mechanisms.
METHODS:
An allo-HSCT mouse model was established. Recipient rats were randomly divided into BMT+NaCl group and BMT+MMI-0100 group, and were injected with NaCl and MMI-0100 every day after transplantation, respectively. Samples of the two groups were collected on d 7 and 14, femur paraffin sections were stained with HE, and pathological changes in the bone marrow cavity were observed under the light microscope. The gene and protein expression levels of pro-inflammatory cytokines IL-1β and IL-18 were detected by qPCR and Western blot. Macrophage typing was detected by flow cytometry. The expression levels of NLRP3 and Caspase-1 were detected by Western blot.
RESULTS:
Inflammatory cell infiltration in the bone marrow cavity was significantly reduced in the BMT+MMI-0100 group. Western blot results showed that the protein expression levels of IL-1β and IL-18 in the BMT+MMI-0100 group were decreased compared to the BMT+NaCl group on day 7 and day 14 (all P <0.01). The qPCR results showed that compared to the BMT+NaCl group, the IL-18 gene expression levels in the BMT+MMI-0100 group were significantly reduced on day 7 and day 14 (both P <0.01). In the BMT+MMI-0100 group, the expression level of IL-1β gene decreased on day 7 (P <0.05), but increased and was higher than that in the BMT+NaCl group on day 14 (P <0.05). Flow cytometry results showed that the expression of M1 macrophages and M1/M2 ratio decreased in the BMT+MMI-0100 group compared to BMT+NaCl group (all P <0.05). Western blot results showed that the protein expression levels of NLRP3 and Caspase-1 in the BMT+MMI-0100 group were lower than those in the BMT+NaCl group (all P <0.05).
CONCLUSION
MMI-0100 can ameliorate bone marrow inflammatory injury after allo-HSCT and may act by reducing NLRP3 expression to promote M2 polarization.
Animals
;
Interleukin-1beta/metabolism*
;
Rats
;
Interleukin-18/metabolism*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammation
;
Bone Marrow/pathology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Caspase 1/metabolism*
;
Macrophages
;
Transplantation, Homologous
2.Connexin 43-modified bone marrow stromal cells reverse the imatinib resistance of K562 cells via Ca 2+ -dependent gap junction intercellular communication.
Xiaoping LI ; Yunshuo XIAO ; Xiaoqi WANG ; Ruihao HUANG ; Rui WANG ; Yi DENG ; Jun RAO ; Qiangguo GAO ; Shijie YANG ; Xi ZHANG
Chinese Medical Journal 2023;136(2):194-206
BACKGROUND:
Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown.
METHODS:
Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance.
RESULTS:
Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments.
CONCLUSIONS
Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Bone Marrow Cells
;
Cell Communication
;
Connexin 43/genetics*
;
Gap Junctions/metabolism*
;
Imatinib Mesylate/therapeutic use*
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology*
;
Mesenchymal Stem Cells/metabolism*
;
Tumor Microenvironment
;
Calcium/metabolism*
3.The Latest Research Progress of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients --Review.
Xiao-Sui LING ; Hai-Ping HE ; Li-Hua ZHANG ; Fan LI
Journal of Experimental Hematology 2023;31(4):1233-1236
Multiple myeloma (MM) is a malignant proliferative disease of plasma cells. Bone marrow mesenchymal stem cells (MSC) play an important role in the progression of MM. Compared with normal donor derived MSC (ND-MSC), MM patients derived MSC (MM-MSC) exhibit abnormalities in genes, signaling pathways, protein expression levels and cytokines secreted by themselves. Moreover, the exosomes of MM-MSC can interact with the bone marrow microenvironment. The above reasons can lead to MM cell proliferation, chemoresistance, impaired osteogenic differentiation of MM-MSC, and affect the immunomodulatory capacity of MM patients. In order to further understand the pathogenesis and related influencing factors of MM, this paper reviews the latest research progress of MM-MSC.
Humans
;
Multiple Myeloma/pathology*
;
Osteogenesis
;
Mesenchymal Stem Cells
;
Cell Differentiation
;
Bone Marrow/metabolism*
;
Bone Marrow Cells/metabolism*
;
Tumor Microenvironment
4.Mechanisms of Extracellular Vesicles Involved in Multiple Myeloma --Review.
Yi-Hui GUO ; Jia-Wei XU ; Hui SONG ; Qing ZENG ; Wei-Min CHENG
Journal of Experimental Hematology 2022;30(5):1612-1616
Multiple myeloma (MM) is a common hematologic tumor characterized by malignant proliferation of clonal plasma cells, the exact pathogenesis of which is not yet fully understood. The extracellular vesicles (EV) are structures released by cells into their surroundings that do not have a functional nucleus and can communicate between cells or deliver biologically active proteins and nucleic acids to target cells. EV play an important role in the interaction between myeloma cells and the bone marrow microenvironment, and they can promote MM progression. In this paper, we summarize the recent research progress in the mechanism of action of EV on MM in order to provide inspiration for exploring new strategies for MM treatment and prognostic stratification.
Bone Marrow/metabolism*
;
Extracellular Vesicles/pathology*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Multiple Myeloma/pathology*
;
Nucleic Acids/metabolism*
;
Tumor Microenvironment
5.A Case of Chronic Myeloid Leukemia With Rare Variant ETV6/ABL1 Rearrangement.
Soo In CHOI ; Mi Ae JANG ; Woo Joon JEONG ; Byung Ryul JEON ; Yong Wha LEE ; Hee Bong SHIN ; Dae Sik HONG ; You Kyoung LEE
Annals of Laboratory Medicine 2017;37(1):77-80
No abstract available.
Bone Marrow/pathology
;
Chromosomes, Human, Pair 12
;
Chromosomes, Human, Pair 9
;
Core Binding Factor Alpha 2 Subunit/*genetics
;
DNA/metabolism
;
Gene Rearrangement
;
Humans
;
In Situ Hybridization, Fluorescence
;
Karyotyping
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis/*genetics
;
Male
;
Middle Aged
;
Oncogene Proteins, Fusion/*genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Translocation, Genetic
6.Concurrence of e1a2 and e19a2 BCR-ABL1 Fusion Transcripts in a Typical Case of Chronic Myeloid Leukemia.
Jaehyeon LEE ; Dal Sik KIM ; Hye Soo LEE ; Sam Im CHOI ; Yong Gon CHO
Annals of Laboratory Medicine 2017;37(1):74-76
No abstract available.
Aged, 80 and over
;
Base Sequence
;
Bone Marrow/pathology
;
DNA/chemistry/metabolism
;
Female
;
Fusion Proteins, bcr-abl/*genetics
;
Humans
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis/*genetics
;
Multiplex Polymerase Chain Reaction
;
Protein Isoforms/genetics
;
Sequence Analysis, DNA
7.Acute Myeloid Leukemia With MLL Rearrangement and CD4+/CD56+ Expression can be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports.
Ju Mee LEE ; In Suk KIM ; Jeong Nyeo LEE ; Sang Hyuk PARK ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Hye Ran KIM ; Seung Hwan OH ; Sae Am SONG
Annals of Laboratory Medicine 2016;36(5):494-497
No abstract available.
Adult
;
Antigens, CD4/*metabolism
;
Antigens, CD56/*metabolism
;
Bone Marrow/metabolism/pathology
;
Dendritic Cells/cytology/*metabolism
;
Diagnostic Errors
;
Exons
;
Female
;
Flow Cytometry
;
Gene Rearrangement
;
Hematologic Neoplasms/diagnosis
;
Histone-Lysine N-Methyltransferase/genetics
;
Humans
;
Immunohistochemistry
;
In Situ Hybridization, Fluorescence
;
Leukemia, Myeloid, Acute/*diagnosis
;
Male
;
Middle Aged
;
Myeloid-Lymphoid Leukemia Protein/genetics
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Transcription Factors/genetics
;
Translocation, Genetic
8.Correlation of NPM1 Type A Mutation Burden With Clinical Status and Outcomes in Acute Myeloid Leukemia Patients With Mutated NPM1 Type A.
Su Yeon JO ; Sang Hyuk PARK ; In Suk KIM ; Jongyoun YI ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Young Uk CHO ; Seongsoo JANG ; Chan Jeoung PARK ; Hyun Sook CHI
Annals of Laboratory Medicine 2016;36(5):399-404
BACKGROUND: Nucleophosmin gene (NPM1) mutation may be a good molecular marker for assessing the clinical status and predicting the outcomes in AML patients. We evaluated the applicability of NPM1 type A mutation (NPM1-mutA) quantitation for this purpose. METHODS: Twenty-seven AML patients with normal karyotype but bearing the mutated NPM1 were enrolled in the study, and real-time quantitative PCR of NPM1-mutA was performed on 93 bone marrow (BM) samples (27 samples at diagnosis and 56 at follow-up). The NPM1-mutA allele burdens (represented as the NPM1-mutA/Abelson gene (ABL) ratio) at diagnosis and at follow-up were compared. RESULTS: The median NPM1-mutA/ABL ratio was 1.3287 at diagnosis and 0.092 at 28 days after chemotherapy, corresponding to a median log10 reduction of 1.7061. Significant correlations were observed between BM blast counts and NPM1-mutA quantitation results measured at diagnosis (γ=0.5885, P=0.0012) and after chemotherapy (γ=0.5106, P=0.0065). Total 16 patients achieved morphologic complete remission at 28 days after chemotherapy, and 14 (87.5%) patients showed a >3 log10 reduction of the NPM1-mutA/ABL ratio. The NPM1-mutA allele was detected in each of five patients who had relapsed, giving a median increase of 0.91-fold of the NPM1-mutA/ABL ratio at relapse over that at diagnosis. CONCLUSIONS: The NPM1-mutA quantitation results corresponded to BM assessment results with high stability at relapse, and could predict patient outcomes. Quantitation of the NPM1-mutA burden at follow-up would be useful in the management of AML patients harboring this gene mutation.
Antineoplastic Agents/therapeutic use
;
Bone Marrow/metabolism/pathology
;
Cytarabine/therapeutic use
;
Daunorubicin
;
Humans
;
Karyotype
;
Leukemia, Myeloid, Acute/drug therapy/genetics/*pathology
;
Mutation
;
Nuclear Proteins/*genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Recurrence
;
Remission Induction
;
Retrospective Studies
;
Sequence Analysis, DNA
;
fms-Like Tyrosine Kinase 3/genetics
9.Clinical Relevance of p53 Immunohistochemical Stain in the Differential Diagnosis Between Pediatric Aplastic Anemia and Refractory Cytopenia of Childhood.
Sang Hyuk PARK ; Hyun Sook CHI ; Young Uk CHO ; Seongsoo JANG ; Chan Jeoung PARK ; Ho Joon IM ; Jong Jin SEO
Annals of Laboratory Medicine 2016;36(2):174-176
No abstract available.
Adolescent
;
Anemia, Aplastic/*diagnosis/pathology
;
Bone Marrow/pathology
;
Child
;
Child, Preschool
;
Diagnosis, Differential
;
Female
;
Half-Life
;
Humans
;
Immunohistochemistry
;
Male
;
Mutation
;
Myelodysplastic Syndromes/*diagnosis/pathology
;
Retrospective Studies
;
Tumor Suppressor Protein p53/genetics/*metabolism
10.A Novel Syntaxin 11 Gene (STX11) Mutation c.650T>C, p.Leu217Pro, in a Korean Child With Familial Hemophagocytic Lymphohistiocytosis.
Ardak K SULTANOVA ; Seong Koo KIM ; Jae Wook LEE ; Pil Sang JANG ; Nack Gyun CHUNG ; Bin CHO ; Joonhong PARK ; Yonggoo KIM ; Myungshin KIM
Annals of Laboratory Medicine 2016;36(2):170-173
We report the first Far Eastern case of a Korean child with familial hemophagocytic lymphohistiocytosis (HLH) caused by a novel syntaxin 11 (STX11) mutation. A 33-month-old boy born to non-consanguineous Korean parents was admitted for intermittent fever lasting one week, pancytopenia, hepatosplenomegaly, and HLH in the bone marrow. Under the impression of HLH, genetic study revealed a novel homozygous missense mutation of STX11: c.650T>C, p.Leu217Pro. Although no large deletion or allele drop was identified, genotype analysis demonstrated that the homozygous c.650T>C may have resulted from the duplication of a maternal (unimaternal) chromosomal region and concurrent loss of the other paternal allele, likely caused by meiotic errors such as two crossover events. A cumulative study of such novel mutations and their effects on specific protein interactions may deepen the understanding of how abnormal STX1 expression results in deficient cytotoxic function.
Alleles
;
Amino Acid Sequence
;
Asian Continental Ancestry Group/*genetics
;
Base Sequence
;
Bone Marrow/metabolism
;
Child, Preschool
;
Comparative Genomic Hybridization
;
DNA Mutational Analysis
;
Genotype
;
Haplotypes
;
Homozygote
;
Humans
;
Lymphohistiocytosis, Hemophagocytic/*genetics/pathology
;
Male
;
Molecular Sequence Data
;
Mutation, Missense
;
Pedigree
;
Qa-SNARE Proteins/*genetics
;
Republic of Korea
;
Sequence Alignment

Result Analysis
Print
Save
E-mail