1.Quantitative measurement of peri-implant bone defects using optical coherence tomography
Sulhee KIM ; Se Ryong KANG ; Hee Jung PARK ; Bome KIM ; Tae Il KIM ; Won Jin YI
Journal of Periodontal & Implant Science 2018;48(2):84-91
PURPOSE: The purpose of this study was to visualize and identify peri-implant bone defects in optical coherence tomography (OCT) images and to obtain quantitative measurements of the defect depth. METHODS: Dehiscence defects were intentionally formed in porcine mandibles and implants were simultaneously placed without flap elevation. Only the threads of the fixture could be seen at the bone defect site in the OCT images, so the depth of the peri-implant bone defect could be measured through the length of the visible threads. To analyze the reliability of the OCT measurements, the flaps were elevated and the depth of the dehiscence defects was measured with a digital caliper. RESULTS: The average defect depth measured by a digital caliper was 4.88±1.28 mm, and the corresponding OCT measurement was 5.11±1.33 mm. Very thin bone areas that were sufficiently transparent in the coronal portion were penetrated by the optical beam in OCT imaging and regarded as bone loss. The intraclass correlation coefficient between the 2 methods was high, with a 95% confidence interval (CI) close to 1. In the Bland-Altman analysis, most measured values were within the threshold of the 95% CI, suggesting close agreement of the OCT measurements with the caliper measurements. CONCLUSIONS: OCT images can be used to visualize the peri-implant bone level and to identify bone defects. The potential of quantitative non-invasive measurements of the amount of bone loss was also confirmed.
Dental Implants
;
Diagnosis
;
Intention
;
Mandible
;
Peri-Implantitis
;
Tomography, Optical Coherence
2.Efficacy of salivary versus subgingival bacterial sampling for the detection and quantification of periodontal pathogens
Yoonsub LEE ; Yoojin HONG ; Bome KIM ; Dajung LEE ; Sungtae KIM ; In-chul RHYU
Journal of Periodontal & Implant Science 2020;50(6):358-367
Purpose:
The aim of this study was to investigate the efficacy and validity of subgingival bacterial sampling using a retraction cord, and to evaluate how well this sampling method reflected changes in periodontal conditions after periodontal therapy.
Methods:
Based on clinical examinations, 87 subjects were divided into a healthy group (n=40) and a periodontitis group (n=47). Clinical measurements were obtained from all subjects including periodontal probing depth (PD), bleeding on probing (BOP), clinical attachment loss (CAL), and the plaque index. Saliva and gingival crevicular fluid (GCF) as a subgingival bacterial sample were sampled before and 3 months after periodontal therapy. The salivary and subgingival bacterial samples were analyzed by reverse-transcription polymerase chain reaction to quantify the following 11 periodontal pathogens: Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Tannerella forsythus (Tf), Treponema denticola (Td), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn), Pavimonas micra (Pm), Campylobacter rectus (Cr), Prevotella nigrescens (Pn), Eikenella corrodens (Ec), and Eubacterium nodatum (En).
Results:
Non-surgical periodontal therapy resulted in significant decreases in PD (P<0.01), CAL (P<0.01), and BOP (P<0.05) after 3 months. Four species (Pg, Tf, Pi, and Pm) were significantly more abundant in both types of samples in the periodontitis group than in the healthy group. After periodontal therapy, Cr was the only bacterium that showed a statistically significant decrease in saliva, whereas statistically significant decreases in Cr, Pg, and Pn were found in GCF.
Conclusions
Salivary and subgingival bacterial sampling with a gingival retraction cord were found to be equivalent in terms of their accuracy for differentiating periodontitis, but GCF reflected changes in bacterial abundance after periodontal therapy more sensitively than saliva.