1.Mechanism analysis of platelet activation induced by V. vulnificus hemolysin.
Yan WANG ; Zihan FENG ; Yaru WANG ; Shiqing LI ; Xin CHEN ; Jinglin WANG ; Yuan YUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):134-142
Objective To evaluate whether Vibrio vulnificus secreted exotoxin-hemolysin (VVH) can activate platelet, an important blood immune cell, and to explore the possible molecular mechanism of platelet activation by VVH. Methods Transcriptomics and immunohistochemistry were used to analyze whether Vibrio vulnificus infection caused platelet activation in mice. Then, flow cytometry was used to identify whether VVH was the main stimulator of platelet activation. Naturally expressed VVH toxin was purified and prepared. The effects of extracellular and intracellular Ca2+ signal inhibitors on VVH activated platelets were evaluated by flow cytometry and Western blotting. The immune activation effect of VVH in the early stage of Vibrio vulnificus infection was analyzed in vivo. Results VVH was the main stimulator of platelet activation in Vibrio vulnificus culture supernatant. Natural VVH can induce the increase of P-selectin (CD62P) on platelet surface, the formation of platelet-neutrophil complex (PNC), and the release of platelet microvesicles. The activation mechanism may be related to the VVH pore-dependent Ca2+-calmodulin (CaM) -myosin light chain kinase (MLCK) signaling pathway, which led to the release of platelet alpha particles and cascade activation of platelets. In a mouse model of ALD infected by Vibrio vulnificus gavage, VVH was strongly associated with platelet activation. Conclusion This study shows that VVH is an important platelet activating molecule in the early stage of Vibrio vulnificus infection, and its induction of platelet activation may be related to the pathogenic process.
Animals
;
Platelet Activation/drug effects*
;
Hemolysin Proteins/pharmacology*
;
Vibrio vulnificus/metabolism*
;
Mice
;
Blood Platelets/drug effects*
;
Vibrio Infections/immunology*
;
P-Selectin/metabolism*
;
Bacterial Proteins
;
Female
2.Immunogenic evaluation of pseudorabies virus gB protein expressed in the baculovirus-insect cell system.
Jin WANG ; Kai WANG ; Ying ZHANG ; Shuzhen TAN ; Shiqi SUN ; Huichen GUO ; Shuanghui YIN ; Jiaqiang NIU
Chinese Journal of Biotechnology 2025;41(7):2694-2706
Pseudorabies (PR) is an infectious disease caused by the pseudorabies virus (PRV), affecting various domesticated and wild animals. Since pigs are the only natural hosts of PRV, PR poses a serious threat to the pig farming industry. Currently, PR is primarily prevented through vaccination with inactivated vaccines or genetically modified attenuated live vaccines. Developing safe and effective genetically engineered vaccines would facilitate the eradication and control of PR. In this study, the PRV vaccine strain Bartha-K61 was used as the reference strain. The gB protein was expressed via the baculovirus-insect cell expression system. Non-denaturing gel electrophoresis confirmed that the gB protein could form a trimeric structure. The purified gB protein was used to immunize mice, and the immune effect was evaluated by a challenge test. The results showed that the gB antigen induced a strong immune response in mice, with the serum-neutralizing antibody titer above 1:70. The lymphocyte stimulation index reached more than 1.29, and the level of (interferon gamma, IFN-γ) release was higher than 100 pg/mL. After immunization, mice were challenged with the virus at a dose of 104 TCID₅₀/mL, 200 μL per mouse, and the clinical protection rate was 100%. Immunohistochemistry, histopathological section, and tissue viral load results showed that the pathological damage and viral load in the gB-immunized group were significantly lower than those in the PBS group. In summary, the gB protein obtained in this study induced strong humoral and cellular immune responses in mice, laying a foundation for developing a recombinant gB protein subunit vaccine.
Animals
;
Mice
;
Baculoviridae/metabolism*
;
Viral Envelope Proteins/biosynthesis*
;
Herpesvirus 1, Suid/genetics*
;
Pseudorabies/immunology*
;
Swine
;
Pseudorabies Vaccines/genetics*
;
Antibodies, Viral/blood*
;
Insecta/cytology*
;
Mice, Inbred BALB C
;
Female
;
Viral Vaccines/immunology*
3.Development and immunogenicity evaluation in mice of a novel mRNA vaccine expressing herpes simplex virus type 2 envelope glycoprotein gD.
Jialuo BING ; Liye JIN ; Yao DENG ; Shucai SUN ; Xiaotian HAN ; Xueting CHENG ; Zhenyong QI ; Tangqi WANG ; Ruiwen HAN ; Desheng ZHAI ; Wenjie TAN
Chinese Journal of Biotechnology 2025;41(8):3241-3251
Human alphaherpesvirus 2 (HSV-2) is the main pathogen resulting human genital herpes, which poses a major threat to the socio-economic development, while there is no effective vaccine. In this study, we developed a novel lipopolyplex (LPP)-delivered mRNA vaccine expressing the HSV-2 envelope glycoprotein gD and evaluated its immunogenicity in mice. The mRNA vaccine was prepared from the genetically modified gD mRNA synthesized in vitro combined with the LPP delivery platform and it was named gD-ORI mRNA. The expression of gD antigen in the mRNA vaccine was validated in vitro by Western blotting and indirect immunofluorescence assay, then the immune responses induced by this mRNA vaccine in mice were evaluated. The immunization with gD mRNA alone induced strong humoral and cellular immune responses in mice. Robust and long-lasting gD-specific IgG antibodies were detected in the mouse serum after booster immunization with gD-ORI mRNA. The immunized mice exhibited a Th1/Th2 balanced IgG response and robust neutralizing antibodies against HSV-2, and a clear dose-response relationship was observed. The gD-specific IgG antibodies were maintained in mice for a long time, up to 18 weeks post-booster immunization. At the same time, multifunctional gD-specific CD4+ and CD8+ T cells in vaccinated mice were detected by intracellular cytokine staining (ICS). This novel gD-expressing mRNA vaccine delivered by LPP induces strong and long-lasting immune responses in mice post booster immunization and has a promising prospect for development and application. This study provides scientific evidence and reference for the development of a new mRNA vaccine for HSV-2.
Animals
;
Herpesvirus 2, Human/genetics*
;
Viral Envelope Proteins/genetics*
;
Mice
;
Herpes Genitalis/immunology*
;
RNA, Messenger/immunology*
;
Female
;
Mice, Inbred BALB C
;
Antibodies, Viral/blood*
;
mRNA Vaccines/immunology*
;
Antibodies, Neutralizing/blood*
;
Humans
4.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
5.Seroprevalence of IgM and IgG Antibodies against SARS-CoV-2 in Asymptomatic People in Wuhan: Data from a General Hospital Near South China Seafood Wholesale Market during March to April in 2020.
Rui Jie LING ; Yi Han YU ; Jia Yu HE ; Ji Xian ZHANG ; Sha XU ; Ren Rong SUN ; Wang Cai ZHU ; Ming Feng CHEN ; Tao LI ; Hong Long JI ; Huan Qiang WANG
Biomedical and Environmental Sciences 2021;34(9):743-749
The aim of this study was to estimate the seroprevalence of immunoglobulin M (IgM) and G (IgG) antibodies against SARS-CoV-2 in asymptomatic people in Wuhan. This was a cross-sectional study, which enrolled 18,712 asymptomatic participants from 154 work units in Wuhan. Pearson Chi-square test,
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Antibodies, Viral/blood*
;
COVID-19/immunology*
;
Carrier State/immunology*
;
Child
;
Child, Preschool
;
China/epidemiology*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Cross-Sectional Studies
;
Female
;
Humans
;
Immunoglobulin G/blood*
;
Immunoglobulin M/blood*
;
Male
;
Middle Aged
;
Occupations/classification*
;
Phosphoproteins/immunology*
;
SARS-CoV-2/immunology*
;
Seroepidemiologic Studies
;
Spike Glycoprotein, Coronavirus/immunology*
;
Young Adult
6.Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection.
Yun TAN ; Feng LIU ; Xiaoguang XU ; Yun LING ; Weijin HUANG ; Zhaoqin ZHU ; Mingquan GUO ; Yixiao LIN ; Ziyu FU ; Dongguo LIANG ; Tengfei ZHANG ; Jian FAN ; Miao XU ; Hongzhou LU ; Saijuan CHEN
Frontiers of Medicine 2020;14(6):746-751
The ongoing pandemic of Coronavirus disease 19 (COVID-19) is caused by a newly discovered β Coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6-7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6-7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6-7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4
Adaptive Immunity/physiology*
;
Adult
;
Aged
;
Antibodies, Neutralizing/blood*
;
COVID-19/immunology*
;
Cohort Studies
;
Female
;
Humans
;
Immunoglobulin G/blood*
;
Male
;
Middle Aged
;
SARS-CoV-2/immunology*
;
T-Lymphocytes/physiology*
;
Time Factors
;
Viral Proteins/immunology*
7.Clinical Characteristics of Autoimmune Disease with Dual Seropositive Antibodies of Leucine-rich Glioma Inactivated 1 and Contactin-associated Protein 2.
Li Ling DONG ; Hong Zhi GUAN ; Yan HUANG ; Hong Lin HAO ; Jing Wen NIU ; Qing LIU ; Qiang LU ; Dan XU ; Jun Yi ZHANG ; Li Xin ZHOU ; Li Ri JIN ; Hai Tao REN ; Yi Cheng ZHU ; Bin PENG ; Li Ying CUI ; Xiang Qin ZHOU
Acta Academiae Medicinae Sinicae 2019;41(3):344-350
Objective To explore the clinical characteristics of autoimmune disease with dual seropositive antibodies of leucine-rich glioma inactivated 1(LGI1)and contactin-associated protein 2(Caspr2).Methods The clinical data of seven patients with dual seropositive LGI1 and Caspr2 antibodies who were admitted to the Neurology Department of Peking Union Medical College Hospital from July 2014 to December 2017 were retrospectively analyzed.Results Central,peripheral and autonomic nervous systems were all involved in the seven cases;100%(7/7)presented with insomnia,myokymia,neuropahic pain and hyperhydrosis;71%(5/7)showed memory decline or psychiatric and behavioral symptoms;57%(4/7)had urinary hesitation or constipation;and 43%(3/7)had seizure.Electromyography showed 100%(6/6) of the patients had prolonged afterdischarges following normal M waves and/or abnormal spontaneous firing.Electroencephalography revealed slow waves or basic rhythm slowing in 71%(5/7)of patients.Electrocardiography showed sinus tachycardia,axis deviation,and prolonged QT intervals in 71%(5/7)of patients.One patient died from arrhythmia before immunotherapy.One died from pulmonary infection after immunotherapy.Improvement with immunotherapy was documented in the other five cases.No relapse was noted during the 1-2-year follow-up.Conclusions Autoimmune disease with dual seropositive antibodies of LGI1 and Caspr2 can diffusely affect the central,peripheral,and autonomic nervous systems.The possibility of this disease should be considered in patients with acute and subacute onset of neuropsychiatric symptoms,especially in patients with accompanying insomnia,myokymia,and hyperhydrosis.
Autoantibodies
;
blood
;
Autoimmune Diseases
;
immunology
;
Humans
;
Membrane Proteins
;
immunology
;
Nerve Tissue Proteins
;
immunology
;
Proteins
;
immunology
;
Retrospective Studies
8.Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice.
San Jun GUO ; Shan REN ; Yong En XIE
Biomedical and Environmental Sciences 2018;31(2):155-158
Acinetobacter baumannii (A. Baumannii) is an emerging opportunistic pathogen responsible for hospital-acquired infections, and which now constitutes a sufficiently serious threat to public health to necessitate the development of an effective vaccine. In this study, a recombinant fused protein named OmpK/Omp22 and two individual proteins OmpK and Omp22 were obtained using recombinant expression and Ni-affinity purification. Groups of BALB/c mice were immunized with these proteins and challenged with a clinically isolated strain of A. baumannii. The bacterial load in the blood, pathological changes in the lung tissue and survival rates after challenge were evaluated. Mice immunized with OmpK/Omp22 fused protein provided significantly greater protection against A. baumannii challenge than those immunized with either of the two proteins individually. The results provide novel clues for future design of vaccines against A. baumannii.
Acinetobacter Infections
;
pathology
;
prevention & control
;
Acinetobacter baumannii
;
genetics
;
immunology
;
Animals
;
Antibodies, Bacterial
;
blood
;
Bacterial Load
;
Bacterial Outer Membrane Proteins
;
genetics
;
immunology
;
Bacterial Vaccines
;
immunology
;
Disease Models, Animal
;
Female
;
Mice, Inbred BALB C
;
Pneumonia, Bacterial
;
pathology
;
prevention & control
;
Recombinant Fusion Proteins
;
genetics
;
immunology
9.Efficient Humoral and Cellular Immune Responses Induced by a Chimeric Virus-like Particle Displaying the Epitope of EV71 without Adjuvant.
Pu LIANG ; Yao YI ; Qiu Dong SU ; Feng QIU ; Xue Ting FAN ; Xue Xin LU ; Sheng Li BI
Biomedical and Environmental Sciences 2018;31(5):343-350
OBJECTIVETo eliminate the side effects of aluminum adjuvant and His-tag, we constructed chimeric VLPs displaying the epitope of EV71 (SP70) without His-tagged. Then evaluating whether the VLPs could efficiently evoke not only humoral but also cellular immune responses against EV71 without adjuvant.
METHODSThe fusion protein was constructed by inserting SP70 into the MIR of truncated HBcAg sequence, expressed in E. Coli, and purified through ion exchange chromatography and density gradient centrifugation. Mice were immunized with the VLPs and sera were collected afterwards. The specific antibody titers, IgG subtypes and neutralizing efficacy were detected by ELISA, neutralization assay, and EV71 lethal challenge. IFN-γ and IL-4 secreted by splenocytes were tested by ELISPOT assay.
RESULTSHBc-SP70 proteins can self-assemble into empty VLPs. After immunization with HBc-SP70 VLPs, the detectable anti-EV71 antibodies were effective in neutralizing EV71 and protected newborn mice from EV71 lethal challenge. There was no significant difference for the immune efficacy whether the aluminum adjuvant was added or not. The specific IgG subtypes were mainly IgG1 and IgG2b and splenocytes from the mice immunized produced high levels of IFN-γ and IL-4.
CONCLUSIONThe fusion proteins without His-tagged was expressed and purified as soluble chimeric HBc-SP70 VLPs without renaturation. In the absence of adjuvant, they were efficient to elicit high levels of Th1/Th2 mixed immune response as well as assisted by aluminum adjuvant. Furthermore, the chimeric VLPs have potential to prevent HBV and EV71 infection simultaneously.
Adjuvants, Immunologic ; Animals ; Antibodies, Neutralizing ; Antibodies, Viral ; blood ; Enterovirus A, Human ; genetics ; Enterovirus Infections ; immunology ; virology ; Epitopes ; immunology ; metabolism ; Escherichia coli ; metabolism ; Female ; Immunity, Cellular ; Immunity, Humoral ; Mice ; Recombinant Fusion Proteins ; immunology
10.Effect of heat shock factor 1 on airway hyperresponsiveness and airway inflammation in mice with allergic asthma.
Jing WANG ; Li-Hong XIN ; Wei CHENG ; Zhen WANG ; Wen ZHANG
Chinese Journal of Contemporary Pediatrics 2017;19(2):222-228
OBJECTIVETo investigate the effect of heat shock factor 1 (HSF1) on airway hyperresponsiveness and airway inflammation in mice with asthma and possible mechanisms.
METHODSA total of 36 mice were randomly divided into four groups: control, asthma, HSF1 small interfering RNA negative control (siHSF1-NC), and siHSF1 intervention (n=9 each). Ovalbumin (OVA) sensitization and challenge were performed to induce asthma in the latter three groups. The mice in the siHSF1-NC and siHSF1 groups were treated with siHSF1-NC and siHSF1, respectively. A spirometer was used to measure airway responsiveness at 24 hours after the last challenge. The direct count method was used to calculate the number of eosinophils. ELISA was used to measure the serum level of OVA-specific IgE and levels of interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), and interferon-γ (IFN-γ) in lung tissues and bronchoalveolar lavage fluid (BALF). Quantitative real-time PCR was used to measure the mRNA expression of HSF1 in asthmatic mice. Western blot was used to measure the protein expression of HSF1, high-mobility group box 1 (HMGB1), and phosphorylated c-Jun N-terminal kinase (p-JNK).
RESULTSThe asthma group had significant increases in the mRNA and protein expression of HSF1 compared with the control group (P<0.05). The siHSF1 group had significantly reduced mRNA and protein expression of HSF1 compared with the siHSF1-NC group (P<0.05). The knockdown of HSF1 increased airway wall thickness, airway hyperresponsiveness, OVA-specific IgE content, and the number of eosinophils (P<0.05). Compared with the siHSF1-NC group, the siHSF1 group had significantly increased levels of IL-4, IL-5, and IL-13 and significantly reduced expression of IFN-γ in lung tissues and BALF (P<0.05), as well as significantly increased expression of HMGB1 and p-JNK (P<0.05).
CONCLUSIONSKnockdown of HSF1 aggravates airway hyperresponsiveness and airway inflammation in asthmatic mice, and its possible mechanism may involve the negative regulation of HMGB1 and JNK.
Animals ; Asthma ; etiology ; Bronchial Hyperreactivity ; etiology ; immunology ; Cytokines ; biosynthesis ; DNA-Binding Proteins ; analysis ; physiology ; Eosinophils ; physiology ; Female ; HMGB1 Protein ; analysis ; Heat Shock Transcription Factors ; Immunoglobulin E ; blood ; Mice ; Mice, Inbred BALB C ; Transcription Factors ; analysis ; physiology

Result Analysis
Print
Save
E-mail