1.Distribution of MN blood type among China's minority ethnic groups.
Wenwen WANG ; Ping CHEN ; Aowei SONG ; Wenhua WANG ; Jiameng NIU ; Lili XING ; Jiangcun YANG ; Yang SUN ; Chao ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):51-56
Objective This study aims to investigate and analyze the distribution of MN blood type among ethnic minorities in China. Methods Through a systematic retrieval of the 981 literature related to MN blood group distribution, 120 literature, meeting the criteria of this study, with complete data were selected. The literature covers 49 ethnic minorities. SPSS 26 statistical software was used to analyze the data. Results The results showed that among the 49 ethnic minorities in China, the phenotype distribution of MN blood type was MN>MM>NN, with proportions of 42.54%, 41.86%, and 15.06% respectively. The gene frequency for MN blood type exhibited a trend of m>n, with a gene frequency of m being 0.6313 and n being 0.3687. Cluster analysis divided the Chinese ethnic minorities into three groups based on the gene frequency for m, showing the characteristics of Group I>Group II>Group III. Conclusion The MN blood type characteristics in Chinese ethnic minorities show a higher frequency of the M gene compared to the N gene. The frequency of the M gene is higher in southern ethnic minorities than in northern ones. There are significant differences between southwestern ethnic minorities and the Han nationality, but no differences with long-term mixed/settled Han populations.
Humans
;
China/ethnology*
;
Minority Groups
;
Ethnicity/genetics*
;
Gene Frequency
;
Asian People/genetics*
;
Blood Group Antigens/genetics*
2.Recent progress in the regulation of cellular immunity to erythrocyte homologous immunity.
Woxia HONG ; Changlin WU ; Chaopeng SHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):559-563
Chronic anemia patients (such as thalassemia) often rely on long-term red blood cell transfusion to sustain life. However, alloimmune reactions against blood group antigens can pose serious risks to the patients' clinical treatment and survival. The regulatory mechanisms of transfusion-related alloimmunity are not yet well understood. For example, some patients, despite long-term transfusions, do not develop alloimmune reactions, while others produce alloantibodies against multiple blood group antigens, making transfusion therapy increasingly difficult. Red blood cell blood group alloimmunity involves various immune cells, including antigen-presenting cells and different T cells. Many studies are exploring the regulatory roles and even potential interventions. This article reviews the correlation between cellular immunity and red blood cell blood group antigens in alloimmune responses, and explores the interaction between the two, as well as their impact on immune responses.
Humans
;
Immunity, Cellular/immunology*
;
Erythrocytes/immunology*
;
Blood Group Antigens/immunology*
;
Animals
;
Isoantibodies/immunology*
;
T-Lymphocytes/immunology*
3.Serological and Molecular Biological Characteristics of cisAB Blood Group and Transfusion Strategies.
Si-Meng WU ; Qiao-Ni YANG ; Wa GAO ; Xiao-Shuai LI ; Qiu-Shi WANG
Journal of Experimental Hematology 2025;33(1):206-210
OBJECTIVE:
To analyze the serological and molecular biological characteristics of 5 patients with cis AB blood group, and to explore the safe transfusion strategy.
METHODS:
Serological identification of the samples' blood group was performed using anti-A, anti-B, anti-D, anti-A1, anti-H typing reagents and ABO reagent erythrocytes. Molecular biological identification of the samples' blood group was performed using PCR-SSP or gene sequencing.
RESULTS:
The serological identification results of blood group in 5 patients all showed inconsistent forward and reverse typing, presenting as A2B3 or A2Bw. ABO gene sequencing of samples 1, 2 and 3 showed 261delG in exon 6 and 467C>T, 803G>C in exon 7. The genotypes of samples 1, 2 and 3 were determined to be cisAB/O . PCR-SSP genotyping was performed on sample 4 and 5,and the results were both cisAB/O .
CONCLUSION
Patients with cisAB alleles have inconsistent serological manifestations, and genetic testing is necessary to ensure the safety and effectiveness of blood transfusion.
Humans
;
ABO Blood-Group System/genetics*
;
Blood Transfusion
;
Blood Grouping and Crossmatching
;
Genotype
;
Blood Group Antigens/genetics*
;
Alleles
;
Male
;
Female
4.A Retrospective Analysis of Irregular Erythrocyte Antibodies in the Blood Transfusion Department of People's Hospital of Xinjiang Uygur Autonomous Region from 2011 to 2022.
Ru-Bin WANG ; Hui-Jun LI ; Fei LI ; Wei CHEN
Journal of Experimental Hematology 2025;33(1):211-216
OBJECTIVE:
The distribution of irregular erythrocyte antibodies in the blood transfusion department of the People's Hospital of Xinjiang Uygur Autonomous Region from 2011 to 2022 and the relationship between irregular erythrocyte antibodies and ethnicity, gender, pregnancy history, blood transfusion history were retrospectively analyzed.
METHODS:
The irregular antibody screening data of patients who were proposed to receive blood transfusions in the clinical blood transfusion safety and blood management software of our hospital from 2011 to 2022 were collected for a retrospective study, and the distribution of irregular erythrocyte antibodies from 2011 to 2022 was analyzed. The relationship between ethnicity, gender, pregnancy history, blood transfusion history and the detection rate of irregular erythrocyte antibodies was further analyzed.
RESULTS:
From 2011 to 2022, the positive detection rate of irregular erythrocyte antibodies in 329 270 samples was 0.77%. Rh blood group (43.72%), Lewis blood group (9.90%) and MNS blood group (6.44%) accounted for the highest proportion of irregular erythrocyte antibody positive samples. In Rh blood group, the proportion of anti-D and anti-E in positive samples was the highest, with 19.09% and 16.06%, respectively. In MNS blood group, the proportion of anti-M in positive samples was the highest (5.46%). In Lewis blood group, the proportion of anti-Lea in positive samples was the highest (8.80%). Compared with other ethnic groups, the detection rates of irregular erythrocyte antibodies were significantly higher in Han, Hui and Uyghur ethnic groups (P < 0.001). Irregular erythrocyte antibody positive samples in Rh blood group system were concentrated in Han and Uygur ethnic groups. Compared to males and patients without a history of blood transfusion and pregnancy, female patients and patients with a history of blood transfusion and pregnancy had significantly higher detection rates of irregulart erythrocyte antibodies (P < 0.01).
CONCLUSION
The results of irregular antibody screening before blood transfusion showed that Rh blood group system antibodies were the main type of irregular antibodies, and the screening of various Rh blood group antigens should be strengthened. And the screening should be focused on female, patients with blood transfusion history and pregnancy history, as well as ethnic minority patients.
Humans
;
Retrospective Studies
;
Female
;
Blood Transfusion
;
China
;
Rh-Hr Blood-Group System/immunology*
;
Male
;
Erythrocytes/immunology*
;
Pregnancy
;
Isoantibodies/blood*
;
Blood Grouping and Crossmatching
;
Antibodies
;
Adult
;
Blood Group Antigens/immunology*
5.A Preliminary Study on Genetic Polymorphism of 12 Rare Blood Group of Dongxiang Nationality in Gansu Province.
Jia-Dong DING ; Yi-Yuan WANG ; Xiao-Ping ZHANG
Journal of Experimental Hematology 2025;33(2):552-556
OBJECTIVE:
To detect the alleles of 12 blood group systems (Rh, MNS, Duffy, Kidd, Kell, Diego, Dombrock, Yt, Colton, Scianna, Lutheran and Lw) of Dongxiang ethnic group in Gansu province, and understand the characteristics of rare blood group alleles common in Dongxiang ethnic group, in order to provide a basis for safe blood transfusion and the establishment of blood group gene bank.
METHODS:
The alleles of 12 blood group systems were classified by polymerase chain reaction (PCR) in 100 people from Dongxiang ethnic group in Gansu province, and the differences of gene frequency compared to other areas in China were analyzed.
RESULTS:
The allele frequencies of Rh, MNS, and Dombrock blood group systems of Dongxiang ethnic group in Gansu province were similar to northern regions. The Duffy blood group system exhibited specificity, with frequencies lower than most southern regions as well as northern regions. There were no significant differences in Kidd, Kell and Diego blood group systems compared to other regions in China. The Lua gene frequency of Lutheran blood group system was higher than all regions in China, which might be associated with genetic variation or sample selection and size. Yt, Colton, Scianna and Lw blood group genes showed monomorphic distribution, and the genotypes were YtaYta, CoaCoa, Sc1Sc1 and LwaLwa, respectively.
CONCLUSION
Rh, MNS, Duffy, Kidd, Kell, Diego, Dombrock and Lutheran blood group systems show polymorphic distribution, while Yt, Colton, Scianna and Lw blood group systems show monomorphic distribution. The distribution of blood group genes among Dongxiang ethnic group in Gansu province has its own specificity.
Humans
;
China/ethnology*
;
Polymorphism, Genetic
;
Blood Group Antigens/genetics*
;
Gene Frequency
;
Alleles
;
Asian People/genetics*
;
Ethnicity/genetics*
;
Genotype
;
Female
6.The Frequency Difference of Red Blood Cell Group Gene Haplotypes among Han, Indian and Uyghur Populations in Shenzhen Region.
Tong LIU ; Jin QIU ; Fan WU ; Yan-Lia LIANG ; Li-Yan SUN ; Zhi-Hui DENG ; Shuang LIANG
Journal of Experimental Hematology 2025;33(3):863-868
OBJECTIVE:
To study the genetic polymorphism of red blood cell blood group among in Shenzhen Han, Indian and Xinjiang Uyghur populations, to provide scientific basis for the demand prediction and collection strategy of rare blood group, and to explore the genetic differences of blood group between Han and Caucasians.
METHODS:
The haplotypes of antigen coding genes of 10 target blood group systems from 87 Han Chinese and 50 Indian blood donors in Shenzhen, and 49 healthy Uyghur people in Xinjiang were obtained by three-generation sequencing technology, and the polymorphism and frequency characteristics were analyzed.
RESULTS:
Only a single genotype was detected the Langereis and Vel blood group systems in samples from three different populations. Only one genotype of Dombrock blood group was detected in Shenzhen Han, and Junior blood group in Xinjiang Uygur populations. In the MNS, Duffy, Kidd, Dombrock and Junior blood group systems, the haplotype frequency of Indian and Uyghur people was significantly different from that of Han people. Compared with the Han ethnic group, the rare blood group s-, Fy(a-), Jk(a-b-), and Do(a+b-) have a higher frequency among the Uyghur and Indian populations.
CONCLUSION
Haplotype frequencies of antigen genes for MNS, Duffy, Kidd, Dombrock and Junior blood group system in Shenzhen Han, Indian and Uyghur populations displayed a polymorphic difference with unique distribution characteristics different from the ethnic groups in other regions.
Humans
;
Blood Group Antigens/genetics*
;
China/ethnology*
;
Erythrocytes
;
Ethnicity/genetics*
;
Gene Frequency
;
Genotype
;
Haplotypes
;
India/ethnology*
;
Polymorphism, Genetic
;
White People/genetics*
;
Central Asian People/genetics*
;
East Asian People/genetics*
7.A Screening Study of GP.Mur Antigen in Blood Donors in Jiangsu Region.
Lei SHAO ; Tai-Xiang LIU ; Ling MA ; Fang ZHAO ; Ruo-Yang ZHANG ; Hong LIN
Journal of Experimental Hematology 2025;33(4):1150-1154
OBJECTIVE:
To investigate the distribution of GP.Mur antigen in blood donors in Jiangsu Province.
METHODS:
Genomic DNA was extracted from 1 114 blood donors in Jiangsu region. PCR-SSP was performed to amplify GP.Mur, and gene analysis was conducted by direct sequencing of the PCR products. The frequency of GP.Mur in the blood donor population of Jiangsu region was calculated.
RESULTS:
Out of 1 114 randomly selected blood samples, 11 positive bands were detected during amplification. Direct sequencing analysis revealed that among the 11 positive samples, 4 were homozygous for GYP .Mur genotype, 3 were heterozygous for GYP .Mur genotype, and the remaining 4 samples were identified as GYP .HF genotype.
CONCLUSION
This study analyzed the distribution of the GP.Mur antigen and preliminary obtained the frequency data in the blood donor population in Jiangsu region. Further in-depth research on this blood group is of great importance in guiding clinical blood transfusion practices and ensuring transfusion safety.
Humans
;
Blood Donors
;
China
;
Genotype
;
Blood Group Antigens/genetics*
;
Polymerase Chain Reaction
;
Glycophorins/genetics*
;
Gene Frequency
8.Establishment and Preliminary Application of qPCR-Based Genotyping Method for Diego, MNS and Kell Blood Groups of Red Blood Cells.
Bing ZHANG ; Gang XU ; Wen-Jian HU ; Xiao-Zhen HONG ; Xian-Guo XU
Journal of Experimental Hematology 2025;33(5):1429-1434
OBJECTIVE:
To establish a genotyping method for Diego, MNS and Kell blood groups based on quantitative real-time PCR (qPCR) technology, and preliminarily apply it to the screening of rare blood groups in blood donors.
METHODS:
Blood group gene standards containing heterozygous and homozygous alleles were prepared by blood group serological and PCR-SBT methods. Specific amplification primers and hybridization probes were designed, and explore to establish the qPCR method for detecting Diego, MNS, and Kell blood group genotypes. Then the established qPCR method was used to identify blood group genotypes of 186 blood donor samples.
RESULTS:
A method based on qPCR technology was established to identify Dia/Dib, S/s and K/k blood group antigens. The genotyping results of the gene standard samples were consistent with the serological testing results and genotypes detected by PCR-SBT. qPCR testing of 186 samples identified 11 cases of DI*A/B heterozygosity and 19 cases of GYPB*S/s heterozygosity, and the rest were DI*B/B, GYPB*s/s, KEL*02/02 homozygosity. No rare blood group genotypes of DI*A/A, GYPB*S/S, KEL*01.01/01.01 were found.
CONCLUSION
The established qPCR method is suitable for genotyping on Diego, MNS and Kell blood group, and it can be used for batch screening of blood donors and the establishment of rare blood group bank.
Humans
;
Genotype
;
Genotyping Techniques/methods*
;
Real-Time Polymerase Chain Reaction/methods*
;
Blood Group Antigens/genetics*
;
Kell Blood-Group System/genetics*
;
Blood Donors
;
Blood Grouping and Crossmatching/methods*
;
Erythrocytes
;
MNSs Blood-Group System/genetics*
9.Genetic analysis of a child with Complex cortical dysplasia with other brain malformations type 6 due to a p.M73V variant of TUBB gene.
Huiqin XUE ; Qiaoyin TANG ; Rong GUO ; Guizhi CAO ; Yu FENG ; Xiayu SUN ; Hongyong LU
Chinese Journal of Medical Genetics 2023;40(12):1541-1545
OBJECTIVE:
To explore the genetic basis for a child with multiple malformations.
METHODS:
A child who had presented at Shanxi Provincial Children's Hospital in February 2021 was selected as the study subject. Clinical data of the patient was collected, and whole exome sequencing (WES) was carried out to screen pathogenic variants associated with the phenotype. Candidate variant was validated by Sanger sequencing of her family members.
RESULTS:
The child had normal skin, but right ear defect, hemivertebral deformity, ventricular septal defect, arterial duct and patent foramen ovale, and separation of collecting system of the left kidney. Cranial MRI showed irregular enlargement of bilateral ventricles and widening of the distance between the cerebral cortex and temporal meninges. Genetic testing revealed that she has harbored a heterozygous variant of NM_178014.4: c.217A>G (p.Met73Val) in the TUBB gene, which was unreported previously and predicted to be likely pathogenic based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). The child was diagnosed with Complex cortical dysplasia with other brain malformations 6 (CDCBM6).
CONCLUSION
CDCBM is a rare and serious disease with great genetic heterogeneity, and CDCBM6 caused by mutations of the TUBB gene is even rarer. Above finding has enriched the variant and phenotypic spectrum of the TUBB gene, and provided important reference for summarizing the genotype-phenotype correlation of the CDCBM6.
Humans
;
Child
;
Female
;
Abnormalities, Multiple
;
Blood Group Antigens
;
Family
;
Malformations of Cortical Development/genetics*
;
Brain
;
Mutation
10.Screening and obataining of aptamers for the blood group antigen-binding adhesin (BabA) to block Helicobacter pylori (H.pylori) colonization in the stomach of mice.
Yuan YUAN ; Weipeng LI ; Xiaojing ZHOU ; Weili SUN ; Xiaolei TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):793-800
Objective To explore the aptamer specific binding blood group antigen-binding adhesin (BabA) of Helicobacter pylori (H.pylori) for blocking of H.pylori adhering host cell. Methods H.pylori strain was cultured and its genome was extracted as templates to amplify the BabA gene by PCR with designed primers. The BabA gene obtained was cloned and constructed into prokaryotic expression plasmid, which was induced by isopropyl beta-D-galactoside (IPTG) and purified as target. The single stranded DNA (ssDNA) aptamers that specifically bind to BabA were screened by SELEX. Enzyme-linked oligonucleotide assay (ELONA) was used to detect and evaluate the characteristics of candidate aptamers. The blocking effect of ssDNA aptamers on H.pylori adhesion was subsequently verified by flow cytometry and colony counting at the cell level in vitro and in mouse model of infection, respectively. Meanwhile, the levels of cytokines, interleukin 6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), IL-10 and IL-4 in the homogenate of mouse gastric mucosa cells were detected by ELISA. Results The genome of H.pylori ATCC 43504 strains was extracted and the recombinant plasmid pET32a-BabA was constructed. After induction and purification, the relative molecular mass (Mr) of the recombinant BabA protein was about 39 000. The amino acid sequence of recombinent protein was consistent with BabA protein by peptide mass fingerprint (PMF). Five candidate aptamers were selected to bind to the above recombinent BabA protein by SELEX. The aptamers A10, A30 and A42 identified the same site, while A3, A16 and the above three aptamers identified different sites respectively. The aptamer significantly blocked the adhesion of H.pylori in vitro. Animal model experiments showed that the aptamers can block the colonization of H.pylori in gastric mucosa by intragastric injection and reduce the inflammatory response. The levels of IL-4, IL-6, IL-8 and TNF-α in gastric mucosal homogenates in the model group with aptamer treatment were lower than that of model group without treatment. Conclusion Aptamers can reduce the colonization of H.pylori in gastric mucosa via binding BabA to block the adhesion between H.pylori and gastric mucosal epithelial cells.
Animals
;
Mice
;
Helicobacter pylori/genetics*
;
Interleukin-4
;
Interleukin-6
;
Interleukin-8
;
Tumor Necrosis Factor-alpha
;
Stomach
;
Oligonucleotides
;
Adhesins, Bacterial/genetics*
;
Blood Group Antigens

Result Analysis
Print
Save
E-mail