1.Advances in reverse genetics systems for rotavirus
Biyan ZHAO ; Yuanjun ZENG ; Tingdong LI ; Shengxiang GE
Chinese Journal of Microbiology and Immunology 2019;39(7):544-550
Reverse genetics approaches can directly manipulate the genome of virus at the gene level, making it possible to quickly, directly and thoroughly study the mechanisms of virus replication and pathogenesis. At present, many viruses of the family Reoviridae, such as mammalian orthoreovirus ( MRV) and bluetongue virus ( BTV) , have made great progress in basic viral research using the powerful tool of re-verse genetics. However, for members of the genus Rotavirus in the family Reoviridae, progress in the con-struction of reverse genetic systems has been slow. The remarkable reverse genetics system based on helper-viruses was established in 2006, and it was not until 2017 that the entirely plasmid-based reverse genetics system was successfully established. This paper briefly reviewed the development of reverse genetics systems for rotavirus and prospected the direction for future research in order to provide technical support for acceler-ating the basic research on mechanisms of rotavirus infection.
2.Polymerization and evaluation of the protective efficacy of rotavirus VP4* proteins.
Yijian LI ; Guoxing LUO ; Han YANG ; Lianzhi JIA ; Yuanjun ZENG ; Biyan ZHAO ; Tingdong LI ; Shengxiang GE
Chinese Journal of Biotechnology 2019;35(2):281-289
In previous studies, we found that truncated rotavirus VP4* (aa 26-476) could be expressed in soluble form in Escherichia coli and confer high protection against rotavirus in the mouse mode. In this study, we further improved the immunogenicity of VP4* by polymerization. The purified VP4* was polymerized through incubation at 37 ℃ for 24 h, and then the homogeneity of the particles was analyzed by HPLC, TEM and AUC, while the thermal stability and antigenicity was analyzed by DSC and ELISA, respectively. Finally, the immunogenicity and protective efficacy of the polymers analyzed by a mouse maternal antibody model. The results showed that VP4* aggregated into homogeneous polymers, with high thermostability and neutralizing antibody binding activity. In addition, VP4* polymers (endotoxin <20 EU/dose) stimulated higher neutralizing antibodies and confer higher protection against rotavirus-induced diarrhoea compared with the VP4* trimers when immunized with aluminium adjuvant. In summary, the study in VP4* polymers provides a new strategy for the development of recombinant rotavirus vaccines.
Animals
;
Antibodies, Viral
;
Antigens, Viral
;
Capsid
;
Capsid Proteins
;
Mice
;
Polymerization
;
Rotavirus
;
Rotavirus Infections