1.Research progress of bioactive scaffolds in repair and regeneration of osteoporotic bone defects.
Yuangang WU ; Kaibo SUN ; Yi ZENG ; Bin SHEN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):100-105
OBJECTIVE:
To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.
METHODS:
Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.
RESULTS:
The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects. For example, calcium phosphate ceramics scaffolds, hydrogel scaffolds, three-dimensional (3D)-printed biological scaffolds, metal scaffolds, as well as polymer material scaffolds and bone organoids, have all demonstrated good bone repair-promoting effects. However, in the pathological bone microenvironment of osteoporosis, the function of single-material scaffolds to promote bone regeneration is insufficient. Therefore, the design of bioactive scaffolds must consider multiple factors, including material biocompatibility, mechanical properties, bioactivity, bone conductivity, and osteogenic induction. Furthermore, physical and chemical surface modifications, along with advanced biotechnological approaches, can help to improve the osteogenic microenvironment and promote the differentiation of bone cells.
CONCLUSION
With advancements in technology, the synergistic application of 3D bioprinting, bone organoids technologies, and advanced biotechnologies holds promise for providing more efficient bioactive scaffolds for the repair and regeneration of osteoporotic bone defects.
Humans
;
Tissue Scaffolds/chemistry*
;
Bone Regeneration
;
Osteoporosis/therapy*
;
Tissue Engineering/methods*
;
Biocompatible Materials/chemistry*
;
Printing, Three-Dimensional
;
Calcium Phosphates/chemistry*
;
Osteogenesis
;
Ceramics
;
Cell Differentiation
;
Hydrogels
;
Bioprinting
;
Bone and Bones
2.Research advances in three-dimensional bioprinted wound dressings.
Chenghai SHI ; Changbin LEI ; Lingxiao HE ; Dengbin LIAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(10):1351-1355
OBJECTIVE:
To review the research progress of three-dimensional (3D) bioprinting technology for wound dressing design and preparation.
METHODS:
The literature on 3D bioprinted wound dressings in recent years, both domestically and internationally, was retrieved. The core principles of 3D bioprinting technology, mainstream methods, and their applications in wound dressings design and preparation were summarized.
RESULTS:
By leveraging precise spatial manipulation capabilities and multi-material integration, 3D bioprinting technology constructs the functionalized wound dressings with complex structures and bioactivity. These dressings primarily function across several dimensions: wound hemostasis, infection control, controlled drug release, and monitoring wound healing.
CONCLUSION
Although 3D bioprinted wound dressings can promote wound healing through multiple dimensions, large-scale clinical validation is still lacking. Future efforts should further clarify their clinical value and scope of application to provide more efficient, precise, and patient-comfortable treatment options for refractory wounds .
Humans
;
Wound Healing
;
Printing, Three-Dimensional
;
Bioprinting/methods*
;
Bandages
;
Tissue Engineering/methods*
;
Tissue Scaffolds
;
Biocompatible Materials
3.Key role of biomechanical properties and material selection in rotator cuff repair.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(12):1606-1614
OBJECTIVE:
To summarize the biomechanical research progress of biomaterials in rotator cuff injury repair and to explore how biomaterials can restore the native histological and mechanical properties of the rotator cuff.
METHODS:
The relevant literature at home and abroad was widely reviewed to analyze the biomechanical properties of synthetic biomaterials, naturally derived biomaterials, and tissue grafts in the repair of rotator cuff injuries.
RESULTS:
Synthetic biomaterials [such as poly (lactic-co-glycolic acid) and polycaprolactone] can provide initial stable mechanical support due to their adjustable mechanical properties and degradation characteristics, while naturally derived biomaterials (such as collagen and hyaluronic acid) can promote cell adhesion and tissue integration due to their biocompatibility and bioactivity. Tissue grafts exhibit significant clinical utility by providing immediate mechanical stability and promoting tendon-to-bone healing. Three-dimensional bioprinting technology provides new possibilities for personalized repair of rotator cuff injuries by precisely controlling the spatial distribution and mechanical properties of biomaterials.
CONCLUSION
Future studies should further optimize the design of bioprinting materials, cell sources, and scaffolds to achieve better mechanical properties and clinical efficacy of biomaterials in the repair of rotator cuff injuries.
Humans
;
Rotator Cuff Injuries
;
Biocompatible Materials/chemistry*
;
Biomechanical Phenomena
;
Tissue Scaffolds
;
Rotator Cuff/surgery*
;
Tissue Engineering/methods*
;
Polyesters
;
Polyglycolic Acid/chemistry*
;
Hyaluronic Acid/chemistry*
;
Collagen/chemistry*
;
Lactic Acid/chemistry*
;
Polylactic Acid-Polyglycolic Acid Copolymer
;
Bioprinting
;
Wound Healing
;
Printing, Three-Dimensional
;
Tendon Injuries/surgery*
4.4D bioprinting technology and its application in cardiovascular tissue engineering.
Yuxiang HUANG ; Qi LI ; Wu YE ; Ziming HUANG ; Hanxiao QIN ; Ming ZHAO ; Ming LIU
Chinese Journal of Biotechnology 2023;39(10):4046-4056
3D bioprinting technology is a rapidly developing technique that employs bioinks containing biological materials and living cells to construct biomedical products. However, 3D-printed tissues are static, while human tissues are in real-time dynamic states that can change in morphology and performance. To improve the compatibility between in vitro and in vivo environments, an in vitro tissue engineering technique that simulates this dynamic process is required. The concept of 4D printing, which combines "3D printing + time" provides a new approach to achieving this complex technique. 4D printing involves applying one or more smart materials that respond to stimuli, enabling them to change their shape, performance, and function under the corresponding stimulus to meet various needs. This article focuses on the latest research progress and potential application areas of 4D printing technology in the cardiovascular system, providing a theoretical and practical reference for the development of this technology.
Humans
;
Tissue Engineering/methods*
;
Bioprinting/methods*
;
Printing, Three-Dimensional
;
Cardiovascular System
;
Tissue Scaffolds
5.Research advances of three-dimensional bioprinting technology in urinary system tissue engineering.
Zhouyang FU ; Shuwei XIAO ; Weijun FU
Journal of Biomedical Engineering 2022;39(3):639-644
For the damage and loss of tissues and organs caused by urinary system diseases, the current clinical treatment methods have limitations. Tissue engineering provides a therapeutic method that can replace or regenerate damaged tissues and organs through the research of cells, biological scaffolds and biologically related molecules. As an emerging manufacturing technology, three-dimensional (3D) bioprinting technology can accurately control the biological materials carrying cells, which further promotes the development of tissue engineering. This article reviews the research progress and application of 3D bioprinting technology in tissue engineering of kidney, ureter, bladder, and urethra. Finally, the main current challenges and future prospects are discussed.
Bioprinting
;
Regeneration
;
Technology
;
Tissue Engineering/methods*
6.Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology.
Dong Zhen ZHU ; Bin YAO ; Zi Qiang YAN ; Sha HUANG ; Xiaobing FU
Chinese Journal of Burns 2022;38(10):983-988
The scar brings a huge economic burden and creates a serious psychological shadow for patients. Although the current methods for scar treatment tend to be diversified, the treatment method that can truly achieve the goal of "perfect healing" or "scarless healing" after human skin injury is quite scarce. With the wide application of tissue engineering technologies in medicine research, technologies such as three-dimensional bioprinting, organoid culture, and organ chip technologies are constantly emerging. Disease models in vitro based on these innovative technologies showed more advantages than traditional animal disease models. The article introduces the current hotspot technologies in skin tissue engineering such as organoid culture, three-dimensional bioprinting, and organ chip technologies, focuses on summarizing the three key elements to be mastered for constructing an ideal scar model in vitro, and puts forward the future prospect of constructing an ideal scar model in vitro based on our research team's long-term experience in skin tissue repair and regeneration research.
Animals
;
Humans
;
Tissue Engineering
;
Cicatrix
;
Bioprinting/methods*
;
Wound Healing
;
Technology
;
Printing, Three-Dimensional
7.Progress in research and development of soft tissue three-dimensional bioprinting and its supporting equipment.
Yan Ke HU ; Shu Ying CHEN ; Fei ZHOU ; Ya Hui XIONG ; Lei CHEN ; Shao Hai QI
Chinese Journal of Burns 2022;38(11):1090-1095
As a cutting-edge technology of tissue engineering, three-dimensional bioprinting can accurately fabricate biomimetic tissue, which has made great progress in the field of hard tissue printing such as bones and teeth. Meanwhile, the research on soft tissue bioprinting is also developing rapidly. This article mainly discussed the development progress in various bioprinting technologies and supporting equipment including printing software, printing hardware, supporting consumables, and bioreactors for soft tissue three-dimensional bioprinting, and made a prospect for the future research and development direction of soft tissue three-dimensional bioprinting.
Bioprinting/methods*
;
Biocompatible Materials
;
Printing, Three-Dimensional
;
Tissue Engineering
;
Research
8.Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes.
Bin ZHANG ; Qian XUE ; Han-Yi HU ; Meng-Fei YU ; Lei GAO ; Yi-Chen LUO ; Yang LI ; Jin-Tao LI ; Liang MA ; Yu-Feng YAO ; Hua-Yong YANG
Journal of Zhejiang University. Science. B 2019;20(12):945-959
BACKGROUND:
The shortage of donor corneas is a severe global issue, and hence the development of corneal alternatives is imperative and urgent. Although attempts to produce artificial cornea substitutes by tissue engineering have made some positive progress, many problems remain that hamper their clinical application worldwide. For example, the curvature of tissue-engineered cornea substitutes cannot be designed to fit the bulbus oculi of patients.
OBJECTIVE:
To overcome these limitations, in this paper, we present a novel integrated three-dimensional (3D) bioprinting-based cornea substitute fabrication strategy to realize design, customized fabrication, and evaluation of multi-layer hollow structures with complicated surfaces.
METHODS:
The key rationale for this method is to combine digital light processing (DLP) and extrusion bioprinting into an integrated 3D cornea bioprinting system. A designable and personalized corneal substitute was designed based on mathematical modelling and a computer tomography scan of a natural cornea. The printed corneal substitute was evaluated based on biomechanical analysis, weight, structural integrity, and fit.
RESULTS:
The results revealed that the fabrication of high water content and highly transparent curved films with geometric features designed according to the natural human cornea can be achieved using a rapid, simple, and low-cost manufacturing process with a high repetition rate and quality.
CONCLUSIONS
This study demonstrated the feasibility of customized design, analysis, and fabrication of a corneal substitute. The programmability of this method opens up the possibility of producing substitutes for other cornea-like shell structures with different scale and geometry features, such as the glomerulus, atrium, and oophoron.
Artificial Organs
;
Bioprinting
;
Cornea/cytology*
;
Humans
;
Models, Theoretical
;
Printing, Three-Dimensional
;
Tensile Strength
;
Tissue Engineering/methods*
;
Tissue Scaffolds
9.Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.
Hyeryeon JEON ; Kyojin KANG ; Su A PARK ; Wan Doo KIM ; Seung Sam PAIK ; Sang Hun LEE ; Jaemin JEONG ; Dongho CHOI
Gut and Liver 2017;11(1):121-128
BACKGROUND/AIMS: Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. METHODS: A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. RESULTS: The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. CONCLUSIONS: The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.
Bioprinting
;
Cause of Death
;
Gene Expression
;
Hep G2 Cells*
;
Humans
;
Immunohistochemistry
;
Liver
;
Liver Diseases
;
Liver Transplantation
;
Methods
;
Microscopy, Fluorescence
;
Printing, Three-Dimensional
;
Regenerative Medicine
;
Tissue Donors
10.Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering.
Zechuan YANG ; Chunde LI ; Haolin SUN
Journal of Zhejiang University. Medical sciences 2016;45(2):141-146
Three-dimensional (3D) printing technology is characterized by "inside-out" stack manufacturing. Compared with conventional technologies, 3D printing has the advantage of personalization and precision. Therefore, the shape and internal structure of the scaffolds made by 3D printing technology are highly biomimetic. Besides, 3D bioprinting can precisely deposit the biomaterials, seeding cells and cytokines at the same time, which is a breakthrough in printing technique and material science. With the development of 3D printing, it will make great contributions to the reconstruction of vertebrae and intervertebral disc in the future.
Biocompatible Materials
;
Bioprinting
;
Humans
;
Intervertebral Disc
;
growth & development
;
Printing, Three-Dimensional
;
Tissue Engineering
;
methods
;
Tissue Scaffolds

Result Analysis
Print
Save
E-mail