1.Rationalizing the development of biomaterials with a new way of thinking.
Chinese journal of integrative medicine 2011;17(11):864-866
The history of biomaterials research is seriously surveyed. It is found that an immutable way of thinking for developing biomaterials is rooted deeply in Western medicine and biology. It is necessary to modify or change the current status of thinking. In this paper, the author presents an idea to research and develop biomaterials via a combined way of thinking, i.e., combining together the wisdom and knowledge of Western medicine, Chinese medicine, and other disciplines.
Biocompatible Materials
;
pharmacology
;
Biomimetics
;
methods
;
Humans
;
Thinking
2.Frontier and prospect of micro/nano biofabrication based on microbes.
Zhijun SHI ; Xudian SHI ; Zhen SUN ; Guang YANG
Chinese Journal of Biotechnology 2013;29(2):131-140
Microbe is extremely abundant in nature, and its size has a very wide coverage from nano- to micro-scale making it suitable to be processed at multi-scale level as natural "building blocks" and "chassis cells". Biofabrication based on microbes is an artificial manipulation on microbes to assemble functional materials and devices by using the specific structures and various biological functions of microbes. In the meantime, the novel strategies of biofarication enables us to study the behavioral details of microbes, which will provide new platforms for uncovering the unsolved basic scientific problems of microbes. In this paper, we reviewed the frontier and progress in biofabrication from nano- and micro-scale in microbes that were manipulated as structured "building blocks" or functional "micro/nano robots".
Bacteria
;
metabolism
;
Biomimetics
;
methods
;
Biotechnology
;
Microfluidic Analytical Techniques
;
methods
;
Nanotechnology
;
Viruses
;
metabolism
3.Technical innovation and development of industrial biotechnology--special preface of China Summit Forum on Industrial Biotechnology Development/2008.
Chinese Journal of Biotechnology 2008;24(6):911-913
Biomimetics
;
trends
;
Biotechnology
;
trends
;
China
;
Conservation of Natural Resources
;
methods
;
trends
;
Genetic Engineering
;
Industry
;
trends
4.A novel miniature robotic endoscope design for intestinal inspection.
Dong-xiang CHI ; Guo-zheng YAN ; Liang-ming LIN
Chinese Journal of Medical Instrumentation 2002;26(3):180-184
This paper makes a comparison between the traditional endoscope system and the active robotic endoscope system, discusses the human intestine-working conditions of the robotic endoscope system in detail and its design requirements. An active robotic endoscope system based on earthworn-locomotion principles is proposed here and besides, its structure and locomotion mechanism are analyzed. A new method of human intestinal intervention is brought out and it can prevent the robotic endoscope guided by a cone-shaped guide pipe from being jammed or damaged.
Biomimetics
;
instrumentation
;
Endoscopes, Gastrointestinal
;
Endoscopy, Gastrointestinal
;
methods
;
Equipment Design
;
Humans
;
Intestinal Diseases
;
diagnosis
;
Miniaturization
;
Robotics
;
instrumentation
5.Biomimetic nanostructured materials: potential regulators for osteogenesis?
Michelle NGIAM ; Luong T H NGUYEN ; Susan LIAO ; Casey K CHAN ; Seeram RAMAKRISHNA
Annals of the Academy of Medicine, Singapore 2011;40(5):213-222
Nanostructured materials are gaining new impetus owing to the advancements in material fabrication techniques and their unique properties (their nanosize, high surface area-to-volume ratio, and high porosity). Such nanostructured materials mimic the subtleties of extracellular matrix (ECM) proteins, creating artifi cial microenvironments which resemble the native niches in the body. On the other hand, the isolation of mesenchymal stem cells (MSCs) from various tissue sources has resulted in the interest to study the multiple differentiation lineages for various therapeutic treatments. In this review, our focus is tailored towards the potential of biomimetic nanostructured materials as osteoinductive scaffolds for bone regeneration to differentiate MSCs towards osteoblastic cell types without the presence of soluble factors. In addition to mimicking the nanostructure of native bone, the supplement of collagen and hydroxyapatite which mimic the main components of the ECM also brings signifi cant advantages to these materials.
Biomimetics
;
instrumentation
;
methods
;
Bone Transplantation
;
Collagen Type I
;
Extracellular Matrix
;
Humans
;
Mesenchymal Stromal Cells
;
Nanostructures
;
Osteogenesis
;
Tissue Engineering
;
instrumentation
;
methods
6.Biofabrication with chitosan and its application progress.
Chinese Journal of Biotechnology 2009;25(5):665-671
Chitosan is a polymer with good biocompatibility, unique pH-responsive solubility, convenient modification and easier film-formability. Chitosan could serve as an active mediator between biological components and microfabricated devices to prepare biological micro electro mechanical systems (BioMEMS) with high selectivity and sensitivity. Recently, there has been a growing interest in BioMEMS based on biofabrication of chitosan. We reviewed the mechanisms and processes of three biofabrication methods based on chitosan, including directed assembly, enzymatic assembly and self-assembly. Current applications and research progress in biological, medical and environmental fields are also discussed. Finally, future research directions are prospected.
Biocompatible Materials
;
chemistry
;
Biomimetics
;
Biosensing Techniques
;
Catalysis
;
Chitosan
;
chemistry
;
Micro-Electrical-Mechanical Systems
;
methods
;
Nanotechnology
;
Nucleic Acid Hybridization
7.Hybrid Additive Microfabrication Scaffold Incorporated with Highly Aligned Nanofibers for Musculoskeletal Tissues
Dilshan SOORIYAARACHCHI ; Hugo J MINIÈRE ; Shahrima MAHARUBIN ; George Z TAN
Tissue Engineering and Regenerative Medicine 2019;16(1):29-38
BACKGROUND: Latest tissue engineering strategies for musculoskeletal tissues regeneration focus on creating a biomimetic microenvironment closely resembling the natural topology of extracellular matrix. This paper presents a novel musculoskeletal tissue scaffold fabricated by hybrid additive manufacturing method. METHODS: The skeleton of the scaffold was 3D printed by fused deposition modeling, and a layer of random or aligned polycaprolactone nanofibers were embedded between two frames. A parametric study was performed to investigate the effects of process parameters on nanofiber morphology. A compression test was performed to study the mechanical properties of the scaffold. Human fibroblast cells were cultured in the scaffold for 7 days to evaluate the effect of scaffold microstructure on cell growth. RESULTS: The tip-to-collector distance showed a positive correlation with the fiber alignment, and the electrospinning time showed a negative correlation with the fiber density. With reinforced nanofibers, the hybrid scaffold demonstrated superior compression strength compared to conventional 3D-printed scaffold. The hybrid scaffold with aligned nanofibers led to higher cell attachment and proliferation rates, and a directional cell organization. In addition, there was a nonlinear relationship between the fiber diameter/density and the cell actinfilament density. CONCLUSION: This hybrid biofabrication process can be established as a highly efficient and scalable platform to fabricate biomimetic scaffolds with patterned fibrous microstructure, and will facilitate future development of clinical solutions for musculoskeletal tissue regeneration.
Biomimetics
;
Extracellular Matrix
;
Fibroblasts
;
Humans
;
Methods
;
Microtechnology
;
Nanofibers
;
Printing, Three-Dimensional
;
Regeneration
;
Skeleton
;
Tissue Engineering
;
Tissue Scaffolds
8.Enamel biomimetics-fiction or future of dentistry.
Mirali PANDYA ; Thomas G H DIEKWISCH
International Journal of Oral Science 2019;11(1):8-8
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues.
Acid Etching, Dental
;
Amelogenin
;
Biomimetics
;
trends
;
Dental Enamel
;
metabolism
;
Dental Enamel Proteins
;
Dentistry
;
trends
;
Tissue Engineering
;
methods
;
Tooth Remineralization
9.Controllable bio-fabrication based on microbes.
Xudian SHI ; Gang WANG ; Darning WANG ; Longjiang YU ; Guang YANG
Chinese Journal of Biotechnology 2009;25(6):909-913
Microorganisms in nature have rich variety, whose sizes are from nano scale to micro scale. Therefore, microbes can be used as natural "building blocks" in nano/micro multi-level fabrication processes. At present, most of the bio-manufacturing methods do not apply to direct control of living microbes. Their microbiological global functions and superiorities are not available. In this paper, two novel nano/micro bio-fabrication approaches, micro-fluidic control method and magnetic control method have been established. The living microbes could be manipulated to form micro-scaled patterns or to move orientedly. By these approaches, living microbes are taken as nano/micro robots. We could employ their specific biological functions and regulate their controllable self-assembly, which is expected to design and create a series of new special functional materials and devices.
Bacteria
;
metabolism
;
Biomimetics
;
methods
;
Biotechnology
;
Fungi
;
metabolism
;
Gluconacetobacter xylinus
;
metabolism
;
Industrial Microbiology
;
Microfluidic Analytical Techniques
;
methods
;
Microtubules
;
Nanotechnology
;
Saccharomyces cerevisiae
;
metabolism
10.A study on the effect of biomineralization and phosphorylation performed on the titanium implant surfaces.
Ming-yue WU ; Yu-qin ZHOU ; Quan-li LI ; Jia-cai HE ; Ai-bing HOU ; Lian-zi CHEN
Chinese Journal of Stomatology 2012;47(6):354-358
OBJECTIVETo suggest a chemical surface treatment for titanium and to initiate the formation of hydroxycarbonated apatite (HCA) on titanium surface during in vitro bioactivity tests in simulated body fluid (SBF).
METHODSTo improve the bone-bonding ability of Ti implants, commercially pure titanium (cpTi) by a simple chemical pre-treatment in orthophosphoric acid (H(3)PO(4)) with different density was activated, and then the phosphorylation specimens were soaked in SBF to investigate the function of biomineralization.
RESULTSThe scanning electron microscope (SEM) photographs showed that the surfaces of the pre-treated samples were characterized by a complex construction, which consisted of a mesh-like morphology matrix (a micro-roughened surface) and an uniform surface with different morphous of titanium dihydrogen orthophosphate [Ti(H(2)PO(4))(3)] crystal. After 14 days in SBF a homogeneous biomimetic apatite layer precipitated.
CONCLUSIONSThese data suggest that the treatment of titanium by acid etching in orthophosphoric acid is a suitable method to provide the titanium implant with bone-bonding ability.
Acid Etching, Dental ; methods ; Biomimetics ; Body Fluids ; Coated Materials, Biocompatible ; Dental Bonding ; Dental Implants ; Microscopy, Electron, Scanning ; Phosphoric Acids ; chemistry ; Phosphorylation ; Surface Properties ; Titanium ; chemistry