1.Chemical and pharmacological progress on usnic acid and its derivatives.
Sha-Na WUKEN ; Shun-Gang JIAO ; Xin-Yao YANG ; Xiao-Li GAO ; Chang-Hai QU ; Qian ZHANG ; Chun-Sheng LIU ; Peng-Fei TU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2018;43(19):3811-3821
Usnic acid and its derivatives, a group of organic molecules with great importance, are characteristic to lichens, possessing pharmacological activities such as anti-virus, anti-bacteria, anti-humor, anti-inflammatory, analgesic, and anaesthetic effects. Many of them have been widely used as medicine, but also bring side effects such as dermatitis and liver damages. In the past decades, great efforts by isolation, organic synthesis, and structure modification methods were put on discovery of UA derivatives with higher biological activities or less side effects. This paper describes herein the most progress on natural sources, isolation and structure elucidation, structural characteristics, synthesis and modification results, pharmacological activities and toxicities of UA and its derivatives, hopefully to provide valuable reference for further research.
Benzofurans
;
chemistry
;
pharmacology
;
Biological Products
;
Lichens
;
chemistry
2.Natural products chemistry research 2010's progress in China.
Yang YE ; Xi-Qiang LI ; Chun-Ping TANG ; Sheng YAO
Chinese Journal of Natural Medicines (English Ed.) 2012;10(1):1-13
This article reviews the progresses made by Chinese scientists in the field of natural products chemistry in 2010. Selected compounds with unique structural features and/or promising bioactivities were described herein on the basis of structural types.
Biological Products
;
chemistry
;
pharmacology
;
China
;
Humans
;
Molecular Structure
;
Research
3.Research progress of the natural small molecular products synergistically with antifungal agents to inhibit drug-resistant fungi.
Shan-Lun TAN ; Da-Zhi ZHANG ; Yuan-Ying JIANG
Acta Pharmaceutica Sinica 2014;49(8):1097-1104
The incidence of systemic fungal infections have increased dramatically, moreover, drug resistance including either primary (intrinsic) or secondary (acquired) resistance, becomes one of the main reasons accounting for the failure of treating invasive fungal infections in the past decades. Nowadays, clinically available antifungal drugs are limited and their combination in antifungal therapy was not effective. It is expected to be a new strategy to synergistically sensitize antifungal drugs against drug-resistant fungi by using new small molecules. Based on the study in our research group and the reported work of others, we reviewed the research of the natural products which have synergistic effect with the antifungal agents against drug-resistant fungi. This review focused on the resource, structure, pharmacological activity, and action mechanism of the compounds, as well as somewhat in common, and would provide theoretical base for seeking new drug against drug-resistance fungi.
Antifungal Agents
;
chemistry
;
pharmacology
;
Biological Products
;
chemistry
;
pharmacology
;
Drug Synergism
;
Fungi
;
drug effects
4.Clavuridins A and B, two new trinor-guaiane sesquiterpenes isolated from the Xisha soft coral Clavularia viridis.
Yuan GAO ; Wei XIAO ; Hong-Chun LIU ; Jian-Rong WANG ; Li-Gong YAO ; Ping-Kai OUYANG ; De-Cai WANG ; Yue-Wei GUO
Chinese Journal of Natural Medicines (English Ed.) 2017;15(11):855-859
In the present study, two new trinor-guaiane sesquiterpenes, named clavuridins B (1), and A (2), along with three known sesquiterpenes (3-5), were isolated from the Xisha soft coral Clavularia viridis. Their structures and absolute configurations were determined on the basis of spectroscopic analysis, X-ray diffraction analysis with Cu Kα radiation and by comparison with related model compounds. Compounds 1 and 3-5 were evaluated for their cytotoxic activity.
Animals
;
Anthozoa
;
chemistry
;
Biological Products
;
chemistry
;
pharmacology
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Sesquiterpenes, Guaiane
;
chemistry
;
isolation & purification
;
pharmacology
5.Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin.
Bhavitavya NIJAMPATNAM ; Shilpa DUTTA ; Sadanandan E VELU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(8):561-577
The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine, have been isolated from various marine organisms. A class of pyrroloiminoquinone-related alkaloids, known as bispyrroloquinones, is the focus of this review article. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B, and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogs show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogs that has been discovered recently is through the inhibition of indoleamine 2, 3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids and their analogs.
Alkaloids
;
chemistry
;
pharmacology
;
Animals
;
Anti-Infective Agents
;
chemistry
;
pharmacology
;
Antineoplastic Agents
;
chemistry
;
pharmacology
;
Biological Products
;
chemistry
;
pharmacology
;
Humans
;
Indole Alkaloids
;
chemistry
;
pharmacology
;
Indoles
;
chemistry
;
pharmacology
;
Pyrroles
;
chemistry
;
pharmacology
;
Quinolines
;
chemistry
;
pharmacology
;
Quinones
;
chemistry
;
pharmacology
6.Advanced natural products chemistry research in China between 2015 and 2017.
Guo-Xun YANG ; Guang-Lei MA ; Hao LI ; Ting HUANG ; Juan XIONG ; Jin-Feng HU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(12):881-906
In this review, we intensively focus on the advances in research of natural products (NPs) discovery carried out by domestic scholars in China from 2015 through 2017. In general, a total of 1811 publications (1479 in English and 332 in Chinese) were accumulated regarding newly isolated NPs from plants, microorganisms, and marine sources. As a result, 277 selected papers concerning naturally occurring compounds with extraordinary frameworks, origins, and promising activities were discussed in this review article, mainly organized according to their structural classes and novelties.
Animals
;
Biological Products
;
chemistry
;
history
;
pharmacology
;
China
;
Drug Discovery
;
history
;
History, 21st Century
;
Humans
;
Molecular Structure
7.Status of libraries and databases for natural products at abroad.
China Journal of Chinese Materia Medica 2015;40(1):29-35
For natural products are one of the important sources for drug discovery, libraries and databases of natural products are significant for the development and research of natural products. At present, most of compound libraries at abroad are synthetic or combinatorial synthetic molecules, resulting to access natural products difficult; for information of natural products are scattered with different standards, it is difficult to construct convenient, comprehensive and large-scale databases for natural products. This paper reviewed the status of current accessing libraries and databases for natural products at abroad and provided some important information for the development of libraries and database for natural products.
Animals
;
Biological Products
;
chemistry
;
pharmacology
;
Databases, Factual
;
Drug Design
;
Humans
;
Internet
8.Advances in study of dioscin--a natural product.
Li-Na XU ; Yong-Li WEI ; Jin-Yong PENG
China Journal of Chinese Materia Medica 2015;40(1):36-41
Dioscin, a typical saponin, is widely present in the family of Dioscoreaceae, Liliaceae, Caryophyllaceae and Rosaceae, especially in Dioscoreaceae, including Discorea nipponica Makino, Dioscorea zingiberensis C. H. Wright and Dioscorea panthaica Prain et Burkill. Traditional Chinese medicine reported that dioscin plays a role in expectorant, relaxing the muscles and stimulating the blood circulation, aiding digestion and diuresis. With the development of science and technology in recent years, some new extraction and separation techniques and methods have been applied to the study of dioscin, and more and more pharmacological effects were found. Modern pharmacology studies have confirmed that dioscin had some activities on desensitization, anti-inflammatory, lipid-lowering, anti-tumor, hepatoprotection and anti-viral. After oral administration, dioscin is metabolized to diosgenin, which is the true active ingredient and is an important raw material to synthesize steroid hormone drugs. Therefore, the studies on dioscin are valueable and promising. In this review, we make a summary on the researches of dioscin including the extraction technology, separation and prepara- tion, chemical synthesis, drug metabolism, determination and pharmacological researches.
Animals
;
Biological Products
;
adverse effects
;
chemistry
;
pharmacology
;
Diosgenin
;
adverse effects
;
analogs & derivatives
;
chemistry
;
pharmacology
;
Humans
;
Plant Extracts
;
adverse effects
;
chemistry
;
pharmacology
9.Natural products in clinical trials: antibacterial and antifungal agents.
Li HAN ; Dan ZHENG ; Xue-Shi HUANG ; Shi-Shan YU ; Xiao-Tian LIANG
Acta Pharmaceutica Sinica 2007;42(3):236-244
Natural products have played an important role in drug discovery. Today, therapeutics from natural origin count for about 70% of the worldwide human therapeutic sales. For anti-infective treatment even higher figures are reported. This review describes antibacterial and antifungal natural products, semi-synthetic natural products and natural product derived compounds undergoing clinical evaluation or registration from 1998 to end of 2005. In addition, natural product derived drugs launched since 1998 are also discussed in this review.
Anti-Bacterial Agents
;
chemistry
;
pharmacology
;
Antifungal Agents
;
chemistry
;
pharmacology
;
Biological Products
;
chemistry
;
pharmacology
;
Drug Resistance, Microbial
;
Drugs, Investigational
;
chemistry
;
pharmacology
;
Echinocandins
;
chemistry
;
pharmacology
;
Humans
;
Molecular Structure
;
Polyenes
;
chemistry
;
pharmacology
10.Psammaplin A is a natural prodrug that inhibits class I histone deacetylase.
Dong Hoon KIM ; Jongheon SHIN ; Ho Jeong KWON
Experimental & Molecular Medicine 2007;39(1):47-55
Histone deacetylase (HDAC) has been highlighted as one of key players in tumorigenesis and angiogenesis. Recently, several derivatives of psammaplin (Psams) from a marine sponge have been known to inhibit the HDAC activity, but the molecular mechanism for the inhibition has not fully understood. Here, we explored the mode of action of Psams for the inhibition of HDAC activity in the molecular and cellular level. Among the derivatives, psammaplin A (Psam A) showed the potent inhibitory activity in enzyme assay and anti-proliferation assay with IC50 value of 0.003 and 1 microM, respectively. Psam A selectively induced hyperacetylation of histones in the cells, resulting in the upregulation of gelsolin, a well-known HDAC target gene, in a transcriptional level. In addition, reduced Psam A showed a stronger inhibitory activity than that of non-reduced one. Notably, glutathione-depleted cells were not sensitive to Psam A, implying that cellular reduction of the compound is responsible for the HDAC inhibition of Psam A after uptake into the cells. Together, these data demonstrate that Psam A could exhibit its activity under the reduced condition in the cells and be a new natural prodrug targeting HDAC.
Tyrosine/*analogs & derivatives/chemistry/pharmacology
;
Prodrugs/chemistry/*pharmacology
;
Oxidation-Reduction
;
Molecular Structure
;
Humans
;
Histones/metabolism
;
Histone Deacetylases/*antagonists & inhibitors/*classification/genetics/metabolism
;
Hela Cells
;
Enzyme Inhibitors/chemistry/*pharmacology
;
Disulfides/chemistry/*pharmacology
;
Cell Proliferation
;
Biological Products/chemistry/*pharmacology
;
Acetylation