1.Screening of homoacetogen mixed culture converting H2/CO2 to acetate.
Kan LUO ; Bo FU ; Lijuan ZHANG ; Hongbo LIU ; He LIU
Chinese Journal of Biotechnology 2014;30(12):1901-1911
Homoacetogens are a group of microorganisms with application potential to produce chemicals and biofuels by the bioconversion of synthesis gas. In this study, we collected waste activated sludge samples to screen homoacetogens by Hungate anaerobic technique, and studied the effect of pH on acetate and alcohol production from H2/CO2 gas. The mixed culture contained Clostridium ljungdahlii, Lysinibacillus fusiformis and Bacillus cereus. Acetate concentration achieved 31.69 mmol/L when the initial pH was 7. The mixed culture containing homoacetogen could converting H2/CO2 to acetate, which provides an efficient microbial resource for the bioconversion of synthesis gas.
Acetates
;
chemistry
;
Bacteria
;
classification
;
Biofuels
;
Carbon Dioxide
;
Hydrogen
;
Sewage
;
microbiology
2.Light and carbon dioxide-driven synthesis of high-density fuel in Synechococcus elongates UTEX 2973.
Shubin LI ; Tao SUN ; Lei CHEN ; Weiwen ZHANG
Chinese Journal of Biotechnology 2020;36(10):2126-2138
Development of "liquid sunshine" could be a key technology to deal with the issue of fossil fuel depletion. β-caryophyllene is a terpene compound with high energy density and has attracted attention for its potential application as a jet fuel. The high temperature and high light-tolerant photosynthetic cyanobacterium Synechococcus elongatus UTEX 2973 (hereafter Synechococcus 2973), whose doubling time is as short as 1.5 h, has great potential for synthesizing β-caryophyllene using sunlight and CO₂. In this study, a production of ~121.22 μg/L β-caryophyllene was achieved at 96 h via a combined strategy of pathway construction, key enzyme optimization and precursor supply enhancement. In addition, a final production of ~212.37 μg/L at 96 h was realized in a high-density cultivation. To our knowledge, this is the highest production reported for β-caryophyllene using cyanobacterial chassis and our study provide important basis for high-density fuel synthesis in cyanobacteria.
Biofuels/microbiology*
;
Carbon Dioxide/metabolism*
;
Light
;
Photosynthesis
;
Synechococcus/radiation effects*
3.Preface for special issue on bioenergy (2013).
Chinese Journal of Biotechnology 2013;29(3):261-264
Bioenergy, as a renewable energy, is one of the best solutions to substitute part of fossil fuels. Based on the 6th World Bioenergy Symposium, this special issue includes latest reports and articles on the fields of bioethanol, biodiesel, microbial lipid, biofuel standard and aviation biofuels.
Bioelectric Energy Sources
;
microbiology
;
Biofuels
;
microbiology
;
Biotechnology
;
instrumentation
;
methods
;
Ethanol
;
isolation & purification
;
metabolism
4.Progress on biogas technology and engineering.
Xiaofeng LIU ; Yuexiang YUAN ; Zhiying YAN
Chinese Journal of Biotechnology 2010;26(7):924-930
Dwindling supplies of conventional energy sources and the demand to increase the share of renewable energy for sustainability have increased the significance of biogas, the product of synergistic fermentation of biodegrable organic wastes from municipal, agricultural and industrial activities by microbial populations under anaerobic conditions. With extensive research and engineering practice, many technologies and modes have been developed for biogas production and application. Currently, the most widely used mode is the complete-mixing mesophilic fermentation. Europe, especially Germany, is leading the world in the combined heat and power production (CHP) from biogas. In this paper, updated progress in biogas technologies is reviewed, with focuses on anaerobic microorganisms, bioreactor configurations and process development, biogas production and applications, in which perspectives of biogas as a clean and renewable energy are projected.
Bacteria, Anaerobic
;
metabolism
;
physiology
;
Biodegradation, Environmental
;
Bioelectric Energy Sources
;
microbiology
;
trends
;
Biofuels
;
microbiology
;
Fermentation
;
Industrial Microbiology
;
trends
;
Refuse Disposal
;
methods
5.Microbial lipid production by Rhodosporidium toruloides in a two-stage culture mode.
Jintao LIN ; Hongwei SHEN ; Zehui ZHANG ; Cuimin HU ; Guojie JIN ; Haidong TAN ; Zongbao K ZHAO
Chinese Journal of Biotechnology 2010;26(7):997-1002
To shorten the cultivation time and reduce the consumption of raw materials for microbial lipid production, oleaginous yeast Rhodosporidium toruloides AS 2.1389 was cultivated using a two-stage culture mode, in which the cell propagation and lipid accumulation were separated. The yeast cells recovered from the propagation culture were re-suspended in glucose solution for lipid accumulation, through which lipid content over 55% of the dry cell weight was achieved, the longer the propagation stage was, the higher the lipid content. Analysis of the lipid indicated that the long-chain fatty acids with 16 and 18 carbon atoms were major components, suggesting that the lipid can be an alternative feedstock for biodiesel production.
Basidiomycota
;
growth & development
;
metabolism
;
Biofuels
;
Cell Culture Techniques
;
methods
;
Fermentation
;
Industrial Microbiology
;
methods
;
Lipids
;
biosynthesis
6.Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass.
Xu FANG ; Yuqi QIN ; Xuezhi LI ; Lushan WANG ; Tianhong WANG ; Mingtian ZHU ; Yinbo QU
Chinese Journal of Biotechnology 2010;26(7):864-869
Biofuels and bio-based chemicals from lignocellulosic biomass are sustainable, making them alternatives to petroleum-derived fuels and chemicals to address the challenges of the shortage of crude oil supply and climate change resulted from the overconsumption of petroleum-based products, particularly in China. However, high cost in liberating sugars from lignocellulosic biomass is still the bottleneck of the commercialization of biofuels and bio-based chemicals. In this article, the major components of cellulases and their synergistic role in the hydrolysis of pre-treated biomass is reviewed, followed by how to evaluate the enzymatic hydrolysis. With the elucidation of the underlying mechanism of the conformations of the enzyme molecules and their effectiveness in attacking cellulose substrate, more efficient enzymes are expected to be developed. Using the high production strain Penicillium decumbens, the on-site production of cellulases for cellulose ethanol production is discussed.
Biofuels
;
Biomass
;
Biotechnology
;
methods
;
trends
;
Biotransformation
;
Cellulase
;
biosynthesis
;
Hydrolysis
;
Industrial Microbiology
;
methods
;
trends
;
Lignin
;
chemistry
;
metabolism
7.Progress in lignocellulose deconstruction by fungi.
Chinese Journal of Biotechnology 2010;26(10):1333-1339
Inefficient degradation of lignocellulose is one of the main barriers for the utilization of renewable plant biomass for biofuel production. The bottleneck of the biorefinery process is the generation of fermentable sugars from complicated biomass polymers. In nature, the main microbes of lignocelluloses deconstruction are fungi. Therefore, elucidating the mechanism of lignocelluloses degradation by fungi is of critical importance for the commercialization of lignocellulosic biofuels. This review focuses on the progress in lignocelluloses degradation pathways in fungi, especially on the advances made by functional genomics studies.
Biofuels
;
Fungi
;
genetics
;
metabolism
;
Genetic Engineering
;
Genome, Fungal
;
genetics
;
Industrial Microbiology
;
Lignin
;
metabolism
8.Cell factories for biorefinery: core of the technology for biomanufacture.
Chinese Journal of Biotechnology 2010;26(10):1321-1326
The background of developing cell factories for biorefinery was reviewed. Seventeen papers published in this special issue, covering the molecular mechanism of sugar utilization, genome-scale metabolic and regulative networks, the construction technologies, and the optimization of cell factories for biorefinery, were introduced.
Biofuels
;
analysis
;
Biotechnology
;
methods
;
Industrial Microbiology
;
methods
;
Metabolic Engineering
;
methods
;
Metabolic Networks and Pathways
9.Improved production of microbial lipids in the two-liquid phase fermentation system.
Riming YAN ; Zuozuo AI ; Ya WANG ; Zhibin ZHANG ; Qinggui ZENG ; Zhu DU
Chinese Journal of Biotechnology 2013;29(4):536-539
In the present study, we developed a two-liquid phase fermentation system by adding 1% n-dodecane as oxygen-vector to enhance the microbial lipids productivity of Trichosporon fermentans using cassava starch hydrolysate. Results suggest that the oxygen-vector could alleviate the oxygen shortage in flask fermentation. The cell mass and lipids concentration were 101.2 g/L and 50.28 respectively in 2 L fermenter with the presence of 1% n-dodecane. Additionally, gas chromatography analysis also reveals that the microbial lipids produced by T. fermentans contained a higher percentage of saturated fatty acid in the oxygen-vector case.
Alkanes
;
chemistry
;
Biofuels
;
Fermentation
;
Industrial Microbiology
;
methods
;
Lipids
;
biosynthesis
;
Manihot
;
metabolism
;
Starch
;
metabolism
;
Trichosporon
;
genetics
;
metabolism
10.Beta-1,3-glucomannanase assisted lipid extraction from Rhodosporidium toruloides.
Guojie JIN ; Xiaobing YANG ; Hongwei SHEN ; Yanan WANG ; Zhiwei GONG ; Zongbao K ZHAO
Chinese Journal of Biotechnology 2013;29(11):1581-1589
To evaluate the effectiveness of enzymatic assisted extraction (EAE) of lipid from the oleaginous yeast Rhodosporidium toruloides in the presence of beta-1,3-glucomannanase at a larger scale, we investigated the effects of enzymatic treatment and extraction conditions on lipid extraction yields at 10-L scale by using the broth of R. toruloides Y4 as the feed and ethyl acetate as the solvent. When it was treated for 0.5 h, the lipid extraction yield reached 71.1%, indicating that the enzymatic treatment process reached similar efficiency to that obtained at 10-mL scale. The inhibitory effect of emulsification was greatly reduced by repeated extraction. After extracted for three times, yields of lipid extraction, solvent recovery and total material recovery reached 92.9%, 87.0% and 94.2% respectively. As it can use the lipid production slurry with good extraction efficiency, EAE technology is promising for industrial production of microbial lipids.
Basidiomycota
;
metabolism
;
Biofuels
;
Bioreactors
;
Fermentation
;
Industrial Microbiology
;
Lipids
;
biosynthesis
;
isolation & purification
;
beta-Mannosidase
;
metabolism