1.Research advances on biomaterials for the delivery of growth factors to regulate wound repair.
Ting Ting WENG ; Cheng Hao CAI ; Chun Mao HAN ; Xin Gang WANG
Chinese Journal of Burns 2022;38(7):691-696
Wound repair is a highly coordinated and mutually regulated complex process involving various kinds of cells, extracellular matrices and cytokines. A variety of growth factors play an important regulatory role in wound healing, and it is critical to achieve effective delivery and sustained function of growth factors. In recent years, the application of biomaterials in tissue engineering has shown great potential, and the effective delivery of growth factors by biomaterials has attracted increasing attention. Based on this, this paper introduces the mechanism of related growth factors in the process of wound healing, focusing on the recent progress of biomaterial delivery of growth factors to accelerate wound healing, in order to provide new enlightenment for clinical wound treatment.
Biocompatible Materials/metabolism*
;
Extracellular Matrix/metabolism*
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Tissue Engineering
;
Wound Healing
2.Research advances on the application of silk fibroin biomaterials in wound repair.
Chinese Journal of Burns 2022;38(10):973-977
Silk fibroin, a natural fibrin, is a suitable matrix biomaterial for wound repair due to its unique properties such as good biocompatibility, tunable biodegradation and mechanical properties, low host inflammatory response, low cost, ease of fabrication, etc. Silk fibroin can be used alone or in combination with other materials to construct various dressings including scaffolds, hydrogels, films, smart mats, and microneedles, which can meet the needs of different wound repair and regulate the wound repair process. Thus, the application research of silk fibroin in skin tissue engineering has increased dramatically. Compared with other natural materials, silk fibroin promotes tissue regeneration and wound repair by improving cell proliferation, migration, and differentiation behavior at different stages, showing unique advantages in different dimensions. Based on the development of silk fibroin wound repair materials in the recent years, this review focuses on the mechanism and application prospect of silk fibroin and its composite materials in wound repair.
Fibroins/metabolism*
;
Biocompatible Materials/therapeutic use*
;
Tissue Engineering
;
Hydrogels
;
Fibrin
;
Tissue Scaffolds
3.Implantation of canine umbilical cord blood-derived mesenchymal stem cells mixed with beta-tricalcium phosphate enhances osteogenesis in bone defect model dogs.
Byung Jun JANG ; Ye Eun BYEON ; Ji Hey LIM ; Hak Hyun RYU ; Wan Hee KIM ; Yoshihisa KOYAMA ; Masanori KIKUCHI ; Kyung Sun KANG ; Oh Kyeong KWEON
Journal of Veterinary Science 2008;9(4):387-393
This study was performed to evaluate the osteogenic effect of allogenic canine umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) mixed with beta-tricalcium phosphate (beta-TCP) in orthotopic implantation. Seven hundred milligrams of beta-TCP mixed with 1 x 10(6) UCB-MSCs diluted with 0.5 ml of saline (group CM) and mixed with the same volume of saline as control (group C) were implanted into a 1.5 cm diaphyseal defect and wrapped with PLGC membrane in the radius of Beagle dogs. Radiographs of the antebrachium were made after surgery. The implants were harvested 12 weeks after implantation and specimens were stained with H&E, toluidine blue and Villanueva-Goldner stains for histological examination and histomorphometric analysis of new bone formation. Additionally, UCB-MSCs were applied to a dog with non-union fracture. Radiographically, continuity between implant and host bone was evident at only one of six interfaces in group C by 12 weeks, but in three of six interfaces in group CM. Radiolucency was found only near the bone end in group C at 12 weeks after implantation, but in the entire graft in group CM. Histologically, bone formation was observed around beta-TCP in longitudinal sections of implant in both groups. Histomorphometric analysis revealed significantly increased new bone formation in group CM at 12 weeks after implantation (p < 0.05). When applied to the non-union fracture, fracture healing was identified by 6 weeks after injection of UCB-MSCs. The present study indicates that a mixture of UCB-MSCs and beta-TCP is a promising osteogenic material for repairing bone defects.
Animals
;
Biocompatible Materials/metabolism/therapeutic use
;
Bone Substitutes/*therapeutic use
;
Calcium Phosphates/*therapeutic use
;
Dogs
;
Fetal Blood/*cytology
;
Fracture Fixation/methods/veterinary
;
Mesenchymal Stem Cells/*physiology
;
Osteogenesis/*physiology
;
Tissue Engineering/methods
;
Wound Healing/physiology
4.Protective effect of heparin-coated circuits on the platelets during cardiopulmonary bypass.
Kailun ZHANG ; Zhiwei HU ; Yunhai YANG ; Ruqing HUANG ; Huiming FAN ; Zongquan SUN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2003;23(4):403-406
To observe the protective effect of heparin-coated circuits (HCC) on the platelet function during cardiopulmonary bypass (CPB), 23 patients with heart valve replacement were studied. The system heparin dose was 3 mg/kg in the control group (n = 15) and heparin-coated circuits in the HCC group (n = 8). Platelet count, alpha-granule membrane protein-140 (GMP-140) concentrations were determined before CPB, at 60 min of CPB, 30 and 60 min after protamine administration, first 12 h after CPB, respectively. At end of CPB the arterial filters in the circuits were observed by electron microscopy. The amount of first 12-h postoperative blood loss was measured. There was significant reduction in platelet loss during and after CPB in the HCC group in contrast to the control group during CPB (P<0.05). During the first 12 h, postoperative blood loss was reduced in the HCC group as compared with that in the control group (218+/-61 ml, vs. 332+/-118 ml, P<0.05). Electron microscopy showed that in the HCC group the filter meshes and their fringes were clear and fragments of floccules were occasionally seen, without adherent cells or only few adherent cells on their surfaces, whereas several cellular and fibrous components were found to adhere to the surfaces of the filter meshes in the control group. This study indicates that heparin-coated circuits might reduce the platelet loss and activation during CPB and improve hemocompatibility of cardiopulmonary bypass equipment.
Adult
;
Anticoagulants
;
metabolism
;
pharmacology
;
therapeutic use
;
Blood Coagulation
;
drug effects
;
Blood Platelets
;
metabolism
;
Cardiopulmonary Bypass
;
instrumentation
;
Coated Materials, Biocompatible
;
therapeutic use
;
Extracorporeal Circulation
;
Female
;
Fibrinolytic Agents
;
metabolism
;
pharmacology
;
therapeutic use
;
Heart Valve Prosthesis Implantation
;
Heparin
;
metabolism
;
pharmacology
;
therapeutic use
;
Humans
;
Male
;
Middle Aged
;
Mitral Valve Insufficiency
;
surgery
;
P-Selectin
;
metabolism
;
Platelet Activation
;
drug effects
5.Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton's jelly for treating bone defects.
Byung Jae KANG ; Hak Hyun RYU ; Sung Su PARK ; Yoshihisa KOYAMA ; Masanori KIKUCHI ; Heung Myong WOO ; Wan Hee KIM ; Oh Kyeong KWEON
Journal of Veterinary Science 2012;13(3):299-310
Alternative sources of mesenchymal stem cells (MSCs) for replacing bone marrow (BM) have been extensively investigated in the field of bone tissue engineering. The purpose of this study was to compare the osteogenic potential of canine MSCs derived from adipose tissue (AT), BM, umbilical cord blood (UCB), and Wharton's jelly (WJ) using in vitro culture techniques and in vivo orthotopic implantation assays. After canine MSCs were isolated from various tissues, the proliferation and osteogenic potential along with vascular endothelial growth factor (VEGF) production were measured and compared in vitro. For the in vivo assay, MSCs derived from each type of tissue were mixed with beta-tricalcium phosphate and implanted into segmental bone defects in dogs. Among the different types of MSCs, AT-MSCs had a higher proliferation potential and BM-MSCs produced the most VEGF. AT-MSCs and UCB-MSCs showed greater in vitro osteogenic potential compared to the other cells. Radiographic and histological analyses showed that all tested MSCs had similar osteogenic capacities, and the level of new bone formation was much higher with implants containing MSCs than cell-free implants. These results indicate that AT-MSCs, UCB-MSCs, and WJ-MSCs can potentially be used in place of BM-MSCs for clinical bone engineering procedures.
Adipocytes, White/cytology/physiology
;
Alkaline Phosphatase/metabolism
;
Animals
;
Biocompatible Materials/metabolism/*therapeutic use
;
Bone Diseases/*therapy
;
Bone Marrow Cells/cytology/physiology
;
Calcification, Physiologic
;
Calcium/metabolism
;
Calcium Phosphates/metabolism/therapeutic use
;
Cell Proliferation
;
Dogs
;
Female
;
Fetal Blood/cytology/physiology
;
Flow Cytometry
;
Male
;
Mesenchymal Stromal Cells/cytology/*metabolism
;
*Osteogenesis
;
Polyesters/metabolism/therapeutic use
;
Tissue Engineering/*methods
;
Vascular Endothelial Growth Factor A/metabolism
6.Expression of TGF-beta in region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone.
Xiang LING ; Weimin CHEN ; Shenghong LIU ; Gang WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2003;23(3):302-305
The distribution and function of transforming growth factor-beta (TGF-beta) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-TCP recruiting osteoblasts to precipitate the repair of bone defect were investigated. Twenty-four domestic rabbits were operated on bilateral cranial bone to create an experimental bone defect of 8.0 mm in diameter through the whole bone. On the left, Co/N-TCP was implanted as experimental group, but on the right, Co/TCP was implanted as control group. At 2nd, 4th, 8th, 12th week after operation, all animals were sacrificed and the implanted materials with surrounding bone were taken out. Immunohistochemical staining was performed for TGF-beta assay by avidin-biotin complex method (SABC). Simultaneously, TGF-beta was quantitatively analyzed by HPIAS-1000 imaging analysis system. The immunohistochemical staining for TGF-beta revealed that osteoblasts and immature osteocytes highly expressed TGF-beta. Diffused TGF-beta positive staining particles appeared in the mesenchymal and fibrous-tissue. There was no significant difference in the TGF-beta positive staining between two groups in the medial region to original osseous beds at different time points (P > 0.05). However, in distal original osseous bed of the defected region, the positive expression of TGF-beta in the Co/N-TCP group was significantly stronger than in the control group (P < 0.05 or 0.01). The Co/N-TCP has good bioactivities and ability of stimulating and conducting TGF-beta to aggregate and precipitate the healing of bone defect.
Animals
;
Biocompatible Materials
;
therapeutic use
;
Calcium Phosphates
;
Ceramics
;
Collagen
;
Fracture Healing
;
Implants, Experimental
;
Nanotechnology
;
Osseointegration
;
drug effects
;
Osteogenesis
;
physiology
;
Rabbits
;
Skull Fractures
;
metabolism
;
surgery
;
Transforming Growth Factor beta
;
analysis
;
metabolism