1.Progress in co-immobilization of multiple enzymes.
Chinese Journal of Biotechnology 2015;31(4):469-480
Enzyme immobilization is the core technology of biocatalysis. Over the past few decades, enzyme immobilization research mainly focused on single enzyme immobilization. In recent years, multi-enzyme immobilization attracts more and more attention as it could increase the local concentration of reaction and improve the reaction yield. In this review, a summary of the recent progress, together with our research, is presented. Special emphasis is placed on four methods in multi-enzymes co-immobilization, namely, the nonspecific covalent co-immobilization, the nonspecific non-covalent co-immobilization, the non-covalent encapsulation co-immobilized and the site specificity co-immobilized. Finally, some industrial uses of immobilized multi-enzymes were addressed and the application prospect of multi-enzyme immobilization was highlighted.
Biocatalysis
;
Enzymes, Immobilized
2.Advances of metagenomics in discovering novel biocatalysts.
Kui WANG ; Sidi WANG ; Rui HUANG ; Yuhuan LIU
Chinese Journal of Biotechnology 2012;28(4):420-431
Microorganisms contain a large number of biocatalysts, which are of great potential in industrial applications. However, the traditional cultural approaches can obtain only less than 1% of microorganisms. As a culture-independent method, metagenomics is an advanced solution by means of extracting all microbial genomic DNAs in certain environmental habitat, constructing and screening metagenomic libraries to seek novel functional genes. It serves as an effective tool for studying these uncultured microorganisms. Therefore, mining novel biocatalysts from metagenome has drawn the attention of researchers in the world. In this paper, environment sample category, genomic DNA extraction, library construction and screening strategies were reviewed. Recent examples of isolated biocatalysts from metagenomic libraries were presented. Future research directions of metagenomics were also discussed.
Biocatalysis
;
DNA
;
Genomic Library
;
Metagenomics
;
trends
3.Biocatalytic strategies in producing ginsenoside by glycosidase-a review.
Weina LI ; Yunyun JIANG ; Yannan LIU ; Chunying LI ; Daidi FAN
Chinese Journal of Biotechnology 2019;35(9):1590-1606
Panax ginseng is a traditional Chinese medicine with significant pharmaceutical effects and wide application. Through orientational modification and transformation of ginsenoside glycosyl, rare ginsenosides with high antitumor activities can be generated. Traditional chemical methods cannot be applied in clinic. because of extremely complex preparation technologies and very high cost Transformations using microorganisms and their enzymatic systems provide the most feasible methods for solving the main problems. At present, the key problems in enzymatic synthesis of ginsenosides include low specific enzyme activities, identity of enzymes involved in the enzymatic synthesis, and their catalytic mechanisms, as well as nonsystematic studies on structural bioinformatics; specificity of enzymatic hydrolysis for saponin glycosyl has been rarely studied. Many reviews have been reported on glycosidase molecular recognition, immobilization, and biotransformation in ionic liquids (ILs), whereas ginsenoside transformation and application have not been systematically studied. To evaluate theoretical and applied studies on ginsenoside-oriented biotransformation, by reviewing the latest developments in related fields and evaluating the widely applied biocatalytic strategy, this review aims to evaluate the ginsenoside-oriented transformation method with improved product specificity, increased biocatalytic efficiency, and industrial application prospect based on the designed transformations of enzyme and solvent engineering of ILs. Therefore, useful theoretical and experimental evidence can be obtained for the development of ginsenoside anticancer drugs, large-scale preparation, and clinical applications in cancer therapy.
Biocatalysis
;
Ginsenosides
;
Glycoside Hydrolases
;
Panax
;
Saponins
4.Advances of enzymes in the applications of disease treatment and drug preparation.
Rui ZHOU ; Xin LIU ; Bo ZENG ; Wei JIANG ; Guangya ZHANG
Chinese Journal of Biotechnology 2021;37(7):2256-2271
The development of biotechnology and the in-depth research on disease mechanisms have led to increased application of enzymes in the treatment of diseases. In addition, enzymes have shown great potential in drug manufacturing, particularly in production of non-natural organic compounds, due to the advantages of mild reaction conditions, high catalytic efficiency, high specificity, high selectivity and few side reactions. Moreover, the application of genetic engineering, chemical modification of enzymes and immobilization technologies have further improved the function of enzymes. This review summarized the advances of using enzymes as drugs for disease treatment or as catalysts for drug manufacturing, followed by discussing challenges, potential solutions and future perspectives on the application of enzymes in the medical and pharmaceutical field.
Biocatalysis
;
Biotechnology
;
Catalysis
;
Drug Compounding
;
Enzymes/metabolism*
5.Research progress on application of multi-enzyme-catalyzed cascade reactions in enzymatic synthesis of natural products.
Wen-Qian HUANG ; Ying-Xia WANG ; Wei-Sheng TIAN ; Juan WANG ; Peng-Fei TU ; Xiao-Hui WANG ; She-Po SHI ; Xiao LIU
China Journal of Chinese Materia Medica 2023;48(2):336-348
As a biocatalyst, enzyme has the advantages of high catalytic efficiency, strong reaction selectivity, specific target products, mild reaction conditions, and environmental friendliness, and serves as an important tool for the synthesis of complex organic molecules. With the continuous development of gene sequencing technology, molecular biology, genetic manipulation, and other technologies, the diversity of enzymes increases steadily and the reactions that can be catalyzed are also gradually diversified. In the process of enzyme-catalyzed synthesis, the majority of common enzymatic reactions can be achieved by single enzyme catalysis, while many complex reactions often require the participation of two or more enzymes. Therefore, the combination of multiple enzymes together to construct the multi-enzyme cascade reactions has become a research hotspot in the field of biochemistry. Nowadays, the biosynthetic pathways of more natural products with complex structures have been clarified, and secondary metabolic enzymes with novel catalytic activities have been identified, discovered, and combined in enzymatic synthesis of natural/unnatural molecules with diverse structures. This study summarized a series of examples of multi-enzyme-catalyzed cascades and highlighted the application of cascade catalysis methods in the synthesis of carbohydrates, nucleosides, flavonoids, terpenes, alkaloids, and chiral molecules. Furthermore, the existing problems and solutions of multi-enzyme-catalyzed cascade method were discussed, and the future development direction was prospected.
Biological Products/chemistry*
;
Catalysis
;
Alkaloids
;
Biocatalysis
6.Recent progress in fusion enzyme design and applications.
Ziliang HUANG ; Chong ZHANG ; Xi WU ; Nan SU ; Xinhui XING
Chinese Journal of Biotechnology 2012;28(4):393-409
Engineering and redesign of enzymes are important to industrial biocatalysis. Fusion enzyme technology, based on fusion protein design, is frequently used in multifunctional enzyme construction and enzyme proximity control. Here, we reviewed the recent progress in molecular design strategy and application studies of fusion enzymes. The concept and features of fusion enzymes were introduced, followed by a systematical summary of the design strategy of fusion enzymes. In particular, the effects of different linker properties on fusion enzymes and their possible mechanisms were discussed. In addition, recent studies on fusion enzyme applications were also discussed. Finally, based on our own studies on fusion enzymes and the current research progress, the key problems in fusion enzyme technology and perspectives of this field were discussed.
Biocatalysis
;
Biotechnology
;
Enzymes
;
chemistry
;
Protein Engineering
;
Recombinant Fusion Proteins
;
chemistry
7.Application of bioinformatics in researches of industrial biocatalysis.
Hui-Min YU ; Hui LUO ; Yue SHI ; Xu-Dong SUN ; Zhong-Yao SHEN
Chinese Journal of Biotechnology 2004;20(3):325-331
Industrial biocatalysis is currently attracting much attention to rebuild or substitute traditional producing process of chemicals and drugs. One of key focuses in industrial biocatalysis is biocatalyst, which is usually one kind of microbial enzyme. In the recent, new technologies of bioinformatics have played and will continue to play more and more significant roles in researches of industrial biocatalysis in response to the waves of genomic revolution. One of the key applications of bioinformatics in biocatalysis is the discovery and identification of the new biocatalyst through advanced DNA and protein sequence search, comparison and analyses in Internet database using different algorithm and software. The unknown genes of microbial enzymes can also be simply harvested by primer design on the basis of bioinformatics analyses. The other key applications of bioinformatics in biocatalysis are the modification and improvement of existing industrial biocatalyst. In this aspect, bioinformatics is of great importance in both rational design and directed evolution of microbial enzymes. Based on the successful prediction of tertiary structures of enzymes using the tool of bioinformatics, the undermentioned experiments, i.e. site-directed mutagenesis, fusion protein construction, DNA family shuffling and saturation mutagenesis, etc, are usually of very high efficiency. On all accounts, bioinformatics will be an essential tool for either biologist or biological engineer in the future researches of industrial biocatalysis, due to its significant function in guiding and quickening the step of discovery and/or improvement of novel biocatalysts.
Biocatalysis
;
Computational Biology
;
trends
;
Enzymes
;
chemistry
;
metabolism
;
Industrial Microbiology
8.Recent trend of nonaqueous enzymology and biocatalysis in nonaqueous media.
Zhongyi YANG ; Ye NI ; Zhihao SUN
Chinese Journal of Biotechnology 2009;25(12):1779-1783
With the rapid development of industrial biotechnology, breakthrough in enzymology and biocatalysis has been made in recent years, especially in areas of stability and activity of enzyme in nonaqueous media, screening, construction and modification of solvent-tolerant biocatalysts, as well as the development of green solvent with excellent biological and environmental compatibility. Recent trend and future focus include: in silico virtual screening and construction of solvent-tolerant biocatalysts based on bioinformatic technology, modification and construction of native solvent-tolerant biocatalysts, the development of environmental friendly green solvent such as ionic liquids.
Animals
;
Biocatalysis
;
Biotechnology
;
trends
;
Enzymes
;
chemistry
;
genetics
;
Humans
;
Solvents
9.Baeyer-Villiger monooxygenases in the biosynthesis of microbial secondary metabolites.
Yangli LI ; Xiaoyu YANG ; Zixin DENG ; Dongqing ZHU
Chinese Journal of Biotechnology 2019;35(3):351-362
Baeyer-Villiger monooxygenases, a well-studied class of flavin-dependent enzymes, catalyze the conversion of ketones to lactones or esters and the oxygenation of heteroatoms, which possesses great practical prospect in synthetic chemistry and biocatalysis. In this review, we focus on Baeyer-Villiger oxidations involved in biosynthesis of microbial secondary metabolites and discuss the characteristics of these Baeyer-Villiger oxidations and Baeyer-Villiger monooxygenases, to provide reference for the protein engineering of Baeyer-Villiger monooxygenases.
Biocatalysis
;
Catalysis
;
Mixed Function Oxygenases
;
Oxidation-Reduction
;
Protein Engineering
10.Heterologous expression of Streptomyces coelicolor trehalose synthase and whole-cell biocatalyst production of trehalose in Escherichia coli.
Ao WU ; Xian ZHANG ; Meijuan XU ; Taowei YANG ; Huazhong LI ; Zhiming RAO
Chinese Journal of Biotechnology 2019;35(7):1348-1358
The trehalose synthase (ScTreS) gene from Streptomyces coelicolor was successfully cloned and heterologously expressed in Escherichia coli BL21(DE3). The protein purified by Ni-NTA affinity column showed an apparent molecular weight (MW) of 62.3 kDa analyzed by SDS-PAGE. The optimum temperature of the enzyme was 35 °C and the optimum pH was 7.0; the enzyme was sensitive to acidic conditions. By homologous modeling and sequence alignment, the enzyme was modified by site-directed mutagenesis. The relative activities of the mutant enzymes K246A and A165T were 1.43 and 1.39 times that of the wild type, an increased conversion rate of 14% and 10% respectively. To optimize the synthesis conditions of trehalose, the mutant strain K246A was cultivated in a 5-L fermentor and used for whole-cell transformation. The results showed that with the substrate maltose concentration of 300 g/L at 35 °C and pH 7.0, the highest conversion rate reached 71.3%, and the yield of trehalose was 213.93 g/L. However, when maltose concentration was increased to 700 g/L, the yield of trehalose can reach 465.98 g/L with a conversion rate of 66%.
Biocatalysis
;
Cloning, Molecular
;
Escherichia coli
;
Glucosyltransferases
;
Streptomyces coelicolor
;
Trehalose