1.Recent advances in quantum dots-based biosensors for antibiotics detection
Ding RUI ; Chen YUE ; Wang QIUSU ; Wu ZHENGZHANG ; Zhang XING ; Li BINGZHI ; Lin LEI
Journal of Pharmaceutical Analysis 2022;12(3):355-364
Antibiotics are a category of chemical compounds used to treat bacterial infections and are widely applied in cultivation,animal husbandry,aquaculture,and pharmacy.Currently,residual antibiotics and their metabolites pose a potential risk of allergic reactions,bacterial resistance,and increased cancer incidence.Residual antibiotics and the resulting bacterial antibiotic resistance have been recognized as a global challenge that has attracted increasing attention.Therefore,monitoring antibiotics is a critical way to limit the ecological risks from antibiotic pollution.Accordingly,it is desirable to devise new analytical platforms to achieve efficient antibiotic detection with excellent sensitivity and specificity.Quantum dots(QDs)are regarded as an ideal material for use in the development of antibiotic detection biosensors.In this review,we characterize different types of QDs,such as silicon,chalcogenide,carbon,and other doped QDs,and summarize the trends in QD-based antibiotic detection.QD-based sensing applications are classified according to their recognition strategies,including molecularly imprinted polymers(MIPs),aptamers,and immunosensors.We discuss the advantages of QD-derived antibiotic sensors,including low cost,good sensitivity,excellent stability,and fast response,and illustrate the current challenges in this field.
2.Personalized quantitative evaluation of the quality of radiotherapy plans based on dose prediction
Bingzhi WU ; Zhao PENG ; Yongheng YAN ; Jieping ZHOU ; Xie XU ; Xi PEI
Chinese Journal of Radiological Medicine and Protection 2022;42(3):188-193
Objective:To develop a dose prediction-based quantitative evaluation method of the quality of radiotherapy plans, and to verify the clinical feasibility and clinical value of the method .Methods:The 3D U-Netwas trained using the radiotherapy plans of 45 rectal cancer cases that were formulated by physicists with more than five years of radiotherapy experience. After obtaining 3D dose distribution using 3D U-Net prediction, this study established the plan quality metrics of intensity modulated radiotherapy(IMRT) rectal cancer radiotherapy plans using dose-volume histogram(DVH) indexes of dose prediction. Then, the initial scores of rectal cancer radiotherapy plans were determined.Taking the predicted dose as the optimization goal, the radiotherapy plans were optimized and scored again. The clinical significance of this scoring method was verified by comparing the scores and dosimetric parameters of the 15 rectal cancer cases before and after optimization.Results:The radiotherapy plans before and after optimization all met the clinical dose requirements. The total scores were(77.21±9.74) before optimization, and (88.78±4.92) after optimization. Therefore, the optimized radiotherapy planswon increased scores with a statistically significant difference( t=-4.105, P<0.05). Compared to the plans before optimization, the optimized plans show decreased Dmax of all organs at risk to different extents. Moreover, the Dmax, V107%, and HI of PTV and the Dmax of the bladder decreased in the optimized plans, with statistically significant differences ( t=2.346-5.771, P<0.05). There was no statistically significant difference in other indexes before and after optimization ( P>0.05).The quality of the optimized plans were improved to a certain extent. Conclusions:This study proposed a dose prediction-based quantitative evaluation method of the quality of radiotherapy plans. It can be used for the effective personalized elevation of the quality of radiotherapy plans, which is beneficial to effectively compare and review the quality of clinical plans determined by different physicists and provide personalized dose indicators. Moreover, it can provide great guidance for the formulation of clinical therapy plans.
3.PKB/Akt regulates the aggregation of actin by Girdin in mouse fertilized eggs.
Didi WU ; Panpan ZHANG ; Ying LIU ; Bingzhi YU
Chinese Journal of Biotechnology 2016;32(9):1204-1211
The purpose of this study is to reveal the role of Girdin in regulating the aggregation of actin filaments by studying the relationship between PKB/Akt and Girdin. First we used Scansite software (http://scansite.mit.edu) to predict relevant target sites of PKB/Akt on mouse Girdin. To gain insight into the role of phosphorylation of Girdin by PKB/Akt, we assessed the location of phosphorylated Girdin in fertilized eggs by staining with anti-P-Girdin 1 417 Ab. We detected a distinct increase in the fluorescence signal of F-actin and P-Girdin 1 417 after microinjection of Akt WT and myr-Akt. The addition of myr-Akt induced phosphorylation of Girdin in mouse fertilized eggs. In addition, siRNA-mediated Akt-knockdown blocked phosphorylation of Girdin. The distribution of actin filaments was obviously scattered. These results strongly suggest that PKB/Akt could directly phosphorylate Girdin on Ser1 417 and promote its function in mouse fertilized eggs.
Actins
;
physiology
;
Animals
;
Mice
;
Microfilament Proteins
;
physiology
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt
;
physiology
;
RNA, Small Interfering
;
Vesicular Transport Proteins
;
physiology
;
Zygote