1.Immunomodulatory effect of astragaloside IV on T cells of experimental autoimmune encephalomyelitis mice
Bingtao MU ; Jingwen YU ; Chunyun LIU ; Minfang GUO ; Tao MENG ; Pengwei YANG ; Wenyue WEI ; Lijuan SONG ; Jiezhong YU ; Cungen MA
Chinese Journal of Tissue Engineering Research 2024;28(7):1057-1062
BACKGROUND:In the initial stage of multiple sclerosis,central immune cells activate and release a large number of inflammatory factors,causing white matter demyelination and even involving gray matter neurons.The equilibrium of differentiation between different subsets of CD4+ T cells plays an important role in the progression of experimental autoimmune encephalomyelitis.The previous results of the research group showed that the active ingredient astragalus glycoprotein in astragalus can regulate the immune response in experimental autoimmune encephalomyelitis mice,and whether it has a regulatory effect on the differentiation of T cell subsets has not been determined. OBJECTIVE:To explore the therapeutic effects and immune regulatory mechanisms of astragaloside IV on experimental autoimmune encephalomyelitis mice. METHODS:Female C57BL/6 mice were divided into the normal control group,experimental autoimmune encephalomyelitis disease model group,and astragaloside IV treatment group(n=8 per group).Myelin oligodendrocyte glycoprotein peptides 35-55 were used for experimental autoimmune encephalomyelitis model induction in the last two groups.On day 10 to 28 after immunization,the astragaloside IV treatment group was treated with 40 mg/kg per day astragaloside IV intragastrically.Body weight and clinical scores of mice in each group were recorded from the immunization day to the 28th day.On the 28th day after immunization,the mouse spinal cord was taken and made into frozen sections for hematoxylin-eosin staining and Lux fast blue staining to observe pathological changes in the spinal cord.Percentage of splenic T cell subsets was detected using flow cytometry.Western blot assay was used to determine the protein expression of interferon-γ,interleukin-17 and interleukin-6 in the spinal cord.Levels of interferon-γ,interleukin-17,interleukin-6 and interleukin-4 in supernatants of cultured splenocytes were determined by ELISA. RESULTS AND CONCLUSION:(1)Compared with the experimental autoimmune encephalomyelitis disease model group,astragaloside IV could reduce the degree of weight loss in experimental autoimmune encephalomyelitis mice(P<0.05),ameliorate clinical symptoms(P<0.05),inhibit the infiltration of inflammatory cells and alleviate myelin loss(P<0.01,P<0.05).(2)Compared with the experimental autoimmune encephalomyelitis disease model group,astragaloside IV could inhibit the proportion of CD4+T cell subsets expressing interferon-γ(P<0.001)and interleukin-17(P<0.001),but increase percentages of CD4+ interleukin-10+(P<0.001)and CD4+ transforming growth factor-β+(P<0.01)T cell subsets.(3)Astragaloside IV could inhibit the expression of interferon-γ(P<0.05,P<0.01),interleukin-17(P<0.05,P<0.05),and interleukin-6(P<0.05,P<0.05)in the spinal cord and spleen,and up-regulate the expression of interleukin-4(P<0.01)in spleen.(4)These findings confirm that astragaloside IV alleviates clinical symptoms in experimental autoimmune encephalomyelitis mice,which may be related to regulating the splenic T cell subsets,therefore,inhibiting the infiltration of inflammatory cells into the center and reducing the demyelination.
2.Astragaloside inhibits astrocyte activation and inflammatory response induced by inflammation
Jingwen YU ; Minfang GUO ; Bingxin ZHANG ; Bingtao MU ; Tao MENG ; Huiyu ZHANG ; Cungen MA ; Jinzhu YIN ; Lijuan SONG ; Jiezhong YU
Chinese Journal of Tissue Engineering Research 2024;28(31):5022-5028
BACKGROUND:Astrocytes play an important role in the pathology of central nervous system diseases.The phenotypic and functional changes in astrocytes suggest that it may be an effective therapeutic target for central nervous system diseases.Our previous studies have confirmed that astragaloside can inhibit the lipopolysaccharide-induced astrocyte inflammatory response.Whether astragaloside can regulate the phenotype and function of astrocytes through Notch-1 and its downstream signaling pathway remains unclear. OBJECTIVE:To explore the effect of astragaloside on astrocyte activation and inflammatory response induced by inflammation and its possible mechanism. METHODS:Cerebral cortex astrocytes derived from neonatal C57BL/6 mouse were cultured in vitro.CCK-8 assay was used to determine the optimum concentration of astragaloside and Notch active inhibitor DAPT.The astrocytes were divided into five groups:PBS group,lipopolysaccharide group,lipopolysaccharide + astragaloside group,lipopolysaccharide + DAPT group and lipopolysaccharide + DAPT + astragaloside group.The secretion level of inflammatory factors was detected by ELISA,and the level of nitric oxide was detected by Griess method.The astrocytes and splenic mononuclear cells were co-cultured in Transwell chamber to observe the migration of CD4T cells.The expression of astrocyte activation marker GFAP,A1 marker C3 and A2 marker S100A10 as well as Notch 1 and Jag-1 was detected by immunofluorescence staining.The expressions of CFB,C3,S100A10,PTX3,Notch-1,Jag-1,and Hes were detected by western blot assay. RESULTS AND CONCLUSION:(1)According to the results of CCK8 assay,the final concentration of astragaloside was selected as 25 μmol/L and the final concentration of DAPT was 50 μmol/L for follow-up experiments.(2)Compared with PBS group,interleukin-6,interleukin-12 and nitric oxide secretion levels in the lipopolysaccharide group were significantly increased(P<0.05,P<0.05,P<0.01).Compared with the lipopolysaccharide group,interleukin-6(all P<0.05),interleukin-12(P>0.05,P<0.05,P<0.05)and nitric oxide(P<0.05,P<0.01,P<0.01)secretion significantly reduced in the lipopolysaccharide + astragaloside group,lipopolysaccharide +DAPT group,lipopolysaccharide + DAPT + astragaloside group.(3)Compared with the PBS group,the expression of GFAP that is the marker of activated astrocytes and the migration of CD4 T cells were significantly increased in the lipopolysaccharide group(P<0.01).Compared with the lipopolysaccharide group,astrocyte activation was significantly inhibited and CD4 T cell migration was significantly reduced in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group(P<0.05,P<0.05,P<0.01).(4)Compared with the PBS group,the expressions of A1 markers C3 and CFB in the lipopolysaccharide group were increased(P<0.01,P<0.05),and the expressions of A2 markers S100A10 and PTX3 were decreased(P<0.01,P<0.05).Compared with the lipopolysaccharide group,C3(all P<0.01)and CFB(both P<0.05)were significantly reduced and S100A10(all P<0.01)and PTX3(P<0.05,P<0.05 and P>0.05)were increased in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group.(5)Compared with the PBS group,the expressions of Jag-1,Notch-1 and Hes in the lipopolysaccharide group were significantly increased(all P<0.01).Compared with the lipopolysaccharide group,the expressions of Jag-1(all P<0.01),Notch-1(all P<0.01)and Hes(P<0.05,P<0.01 and P<0.01)were significantly reduced in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group.(6)The results indicate that astragaloside can promote the transformation of astrocytes from A1 to A2 by regulating Notch-1 signaling pathway,reduce the secretion of inflammatory factors and the migration of CD4 T cells,and thus inhibit astrocyte activation and inflammatory response.