2.Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.
Silvia G BOMPADRE ; Tzyh-Chang HWANG
Acta Physiologica Sinica 2007;59(4):431-442
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1 and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.
Adenosine Triphosphate
;
physiology
;
Animals
;
Binding Sites
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
physiology
;
Humans
;
Hydrolysis
;
Protein Interaction Domains and Motifs
;
Protein Multimerization
3.Effects of calcium-binding sites in the S2-S3 loop on human and Nematostella vectensis TRPM2 channel gating processes.
Yu-Huan LUO ; Xia-Fei YU ; Cheng MA ; Fan YANG ; Wei YANG
Journal of Zhejiang University. Science. B 2019;20(12):972-982
As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2 (TRPM2) channel from Nematostella vectensis (nvTRPM2). This identified a calcium-binding site in the S2-S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2 (hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvTRPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2-S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues (glutamate and aspartate) substantially decreased the currents of nvTRPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues (glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2-S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2-S3 loop of TRPM2 on the TRPM2 gating process.
Animals
;
Asparagine/physiology*
;
Binding Sites
;
Calcium/metabolism*
;
Glutamine/physiology*
;
HEK293 Cells
;
Humans
;
Ion Channel Gating/physiology*
;
Sea Anemones
;
TRPM Cation Channels/physiology*
4.An infrared imaging system for detecting electrophoretic mobility shift of DNA-protein complexes.
Yi-fei WANG ; De-hong CAI ; Hong CHEN ; Yong-yan MO ; Na YI ; Fei-yue XING
Journal of Southern Medical University 2009;29(2):289-291
OBJECTIVETo establish a new non-radioactive method for electrophoretic mobility shift assay (EMSA) to investigate the binding between glucocorticoid induced leucine zipper (GILZ) and peroxisome proliferator-activated receptor-gamma 2 (PPARgamma2) promoter oligonucleotides.
METHODSGILZ protein prepared by prokaryotic expression was linked to PPARgamma2 promoter oligonucleotides end-labeled with IRDye 800 infrared dye. The DNA-protein complex was separated with non-denatured polyacrylamide gel and scanned with the Odyssey. Infrared Imaging System.
RESULTSOne lane of DNA-protein complex was clearly presented, and the signal intensity increased along with the increment of the protein load.
CONCLUSIONThis infrared imaging system can be used for EMSA for detecting the DNA-protein complex with high sensitivity efficiency and allows easy operation.
Binding Sites ; DNA ; chemistry ; DNA-Binding Proteins ; chemistry ; metabolism ; Electrophoretic Mobility Shift Assay ; instrumentation ; methods ; Fluorescent Dyes ; chemistry ; Gene Expression Regulation ; Humans ; Infrared Rays ; Protein Binding ; Protein Interaction Domains and Motifs ; physiology ; Proteins ; chemistry
5.Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein.
Xiaoyan ZHAO ; Hai PANG ; Shenglan WANG ; Weihong ZHOU ; Keqian YANG ; Mark BARTLAM
Protein & Cell 2010;1(8):771-779
The important and diverse regulatory roles of Ca(2+) in eukaryotes are conveyed by the EF-hand containing calmodulin superfamily. However, the calcium-regulatory proteins in prokaryotes are still poorly understood. In this study, we report the three-dimensional structure of the calcium-binding protein from Streptomyces coelicolor, named CabD, which shares low sequence homology with other known helix-loop-helix EF-hand proteins. The CabD structure should provide insights into the biological role of the prokaryotic calcium-binding proteins. The unusual structural features of CabD compared with prokaryotic EF-hand proteins and eukaryotic sarcoplasmic calcium-binding proteins, including the bending conformation of the first C-terminal α-helix, unpaired ligand-binding EF-hands and the lack of the extreme C-terminal loop region, suggest it may have a distinct and significant function in calcium-mediated bacterial physiological processes, and provide a structural basis for potential calcium-mediated regulatory roles in prokaryotes.
Amino Acid Sequence
;
Binding Sites
;
Calcium
;
physiology
;
Calcium-Binding Proteins
;
chemistry
;
Crystallography, X-Ray
;
EF Hand Motifs
;
Molecular Sequence Data
;
Protein Binding
;
Protein Structure, Tertiary
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Streptomyces coelicolor
;
Structural Homology, Protein
;
Surface Properties
6.Structural mechanism studies of hTNF alpha mutants in position 30 and 42 amino acid.
Fang HU ; Shao-zhong DONG ; Long-ding LIU ; Shao-qing HE ; Shu-dong ZHAO ; Qi-han LI
Acta Academiae Medicinae Sinicae 2002;24(2):144-148
OBJECTIVETo study the relationship between the structure and functional activity of hTNF alpha.
METHODSFour hTNF alpha mutants were constructed, different binding structures and gene responses related with these mutants were studied by the methods of immunoprecipitation and mRNA differential display.
RESULTSThe specific activities and LD50 of the different hTNF alpha mutants indicated their different bioactivities. It was shown that the hTNF alpha mutants had the relative binding affinities to the wild types. The mRNA differential display assay proved that the hTNF alpha mutants stimulated different gene responses.
CONCLUSIONThese results suggest that the specific anti-tumor activities of hTNF alpha mutants are accomplished by inducing different or same gene response at different quantities after its binding to specific receptor.
Amino Acid Motifs ; Apoptosis ; Binding Sites ; Gene Expression Profiling ; Humans ; Molecular Structure ; Mutation ; Structure-Activity Relationship ; Tumor Necrosis Factor-alpha ; genetics ; physiology
7.Biological characteristics of microtubule and related drug research.
Jian-nong LI ; Jian-dong JIANG
Acta Pharmaceutica Sinica 2003;38(4):311-315
Amino Acids
;
isolation & purification
;
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Binding Sites
;
Colchicine
;
pharmacology
;
Humans
;
Microtubules
;
drug effects
;
physiology
;
Paclitaxel
;
pharmacology
;
Tubulin
;
chemistry
;
isolation & purification
;
metabolism
;
Vinblastine
;
pharmacology
9.Effect of proline rich domain of an RNA-binding protein Sam68 in cell growth process, death and B cell signal transduction.
Qing-hua LI ; Tian-xue FAN ; Tian-xiang PANG ; Wen-su YUAN ; Zhong-chao HAN
Chinese Medical Journal 2006;119(18):1536-1542
BACKGROUNDSam68 plays an important role as a multiple functional RNA binding nuclear protein in cell cycle progress, RNA usage, signal transduction, and tyrosine phosphorylation by Src during mitosis. However, its precise impact on these essential cellular functions remains unclear. The purpose of this study is to further elucidate Sam68 functions in RNA metabolism, signal transduction regulation of cell growth and cell proliferation in DT40 cell line.
METHODSBy using gene targeting method, we isolated a mutation form of Sam68 in DT40 cells and described its effect on cell growth process and signal transduction. Southern, Northern, and Western blot, phosphorylation and flow-cytometric analyses were performed to investigate the Sam68 functions.
RESULTSA slower growth rate (2.1 hours growth elongation) and longer S phase (1.7 hours elongation) was observed in the Sam68 mutant cells. Serum depletion resulted in increased amounts of dead cells, and expansion of S phase in mutant cells. Upon B cell cross-linking, the maximal level of tyrosine phosphorylation on BLNK was observed to be significantly lower in mutant cells.
CONCLUSIONSThe proline rich domain of Sam68 is involved in cell growth control by modulating the function of mRNAs in S phase or earlier and the functions as an adaptor molecule in B cell signal transduction pathways.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; physiology ; Animals ; B-Lymphocytes ; cytology ; immunology ; physiology ; Binding Sites ; genetics ; Blotting, Western ; Cell Cycle ; physiology ; Cell Death ; physiology ; Cell Growth Processes ; drug effects ; physiology ; Cell Line, Tumor ; Culture Media, Serum-Free ; pharmacology ; Mutation ; genetics ; Phosphorylation ; Proline ; genetics ; RNA-Binding Proteins ; genetics ; metabolism ; physiology ; Receptors, Antigen, B-Cell ; immunology ; physiology ; Signal Transduction ; drug effects ; physiology ; Tyrosine ; metabolism
10.Studies on rat liver nuclear DNA damaged by chemical carcinogen (3'-Me DAB) and AP DNA endonuclease. II. Kinetic properties of AP DNA endonucleases in rat liver chromatin.
Yoon Soo KIM ; Jong Wook KIM ; Seo Eun LEE ; Sang Hwan OH
Journal of Korean Medical Science 1990;5(3):137-143
An experiment was designed to investigate the reaction mechanism of AP (apurinic or apyrimidinic) DNA endonucleases (APcI, APcII, APcIII) purified from rat liver chromatin. Sulfhydryl compounds (2-mercaptoethanol, dithiothreitol) brought about optimal activities of AP DNA endonucleases and N-ethylmaleimide or HgCl2 inhibited the enzyme activities, indicating the presence of sulfhydryl group at or near the active sites of the enzymes. Mg2+ was essential and 4mM of Mg2+ was sufficient for the optimal activities of AP DNA endonucleases. Km values of APcI, APcII and APcIII for the substrate (E. coli chromosomal AP DNA) were 0.53, 0.27 and 0.36 microM AP sites, respectively. AMP was the most potent inhibitor among adenine nucleotides tested and the inhibition was uncompetitive with respective to the substrate. The Ki values of APcI, APcII and APcIII were 0.35, 0.54 and 0.41mM, respectively. The degree of nick translation of AP DNAs nicked by APcI, APcII and APcIII with Klenow fragment in the presence and absence of T4 polynucleotide kinase or alkaline phosphatase were the same, suggesting that all 3 AP DNA endonucleases excise the phosphodiester bond of AP DNA strand to release 3-hydroxyl nucleotides and 5-phosphomonoester nucleotides.
Animals
;
Binding Sites
;
Chromatin/*enzymology
;
DNA Damage/physiology
;
DNA Repair/physiology
;
DNA-(Apurinic or Apyrimidinic Site) Lyase
;
Deoxyribonuclease IV (Phage T4-Induced)
;
Endodeoxyribonucleases/antagonists & inhibitors/drug effects/*metabolism
;
Kinetics
;
Liver/drug effects/*enzymology
;
Magnesium/pharmacology
;
Rats
;
Sulfhydryl Compounds/pharmacology