1.Bile Acid Transporters Are Expressed and Heterogeneously Distributed in Rat Bile Ducts
Zhu lin LUO ; Long CHENG ; Tao WANG ; Li jun TANG ; Fu zhou TIAN ; Ke XIANG ; Lin CUI
Gut and Liver 2019;13(5):569-575
BACKGROUND/AIMS: Cholangiocytes are capable of reabsorbing bile salts from bile, but the pathophysiological significance of this process is unclear. To this end, we detected the expression and distribution of bile acid transport proteins in cholangiocytes from normal rat liver and analyzed the possible pathophysiological significance. METHODS: Bile duct tissues of Sprague-Dawley rats were isolated by enzymatic digestion and mechanical isolation, and then divided into large and small bile duct tissues. Immunohistochemistry, real-time polymerase chain reaction and Western blotting were used to determine the expression of the apical sodium-dependent bile acid transporter (ASBT), ileal bile acid binding protein (IBABP), and basolateral organic solute transporter α (Ostα) in the biliary tract system of rats. Differences in the expression and distribution of these proteins were analyzed. RESULTS: In cholangiocytes, ASBT and IBABP were mainly expressed in cholangiocytes of the large bile ducts, in which the expression of both was significantly higher than that in the small ducts (p<0.05). Ostα was simultaneously expressed in cholangiocytes of both the large and small bile ducts, showing no significant difference in expression between the two groups of bile ducts (p>0.05). CONCLUSIONS: Bile acid transporters are expressed and heterogeneously distributed in rat bile ducts, indicating that bile acid reabsorption by cholangiocytes might mainly occur in the large bile ducts. These findings may help explore the physiology of bile ducts and the pathogenesis of various cholangiopathies.
Animals
;
Bile Acids and Salts
;
Bile Ducts
;
Bile
;
Biliary Tract
;
Blotting, Western
;
Carrier Proteins
;
Digestion
;
Immunohistochemistry
;
Liver
;
Physiology
;
Population Characteristics
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
3.Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases.
Er-Teng JIA ; Zhi-Yu LIU ; Min PAN ; Jia-Feng LU ; Qin-Yu GE
Journal of Zhejiang University. Science. B 2019;20(10):781-792
Over the past decade, there has been increasing attention on the interaction between microbiota and bile acid metabolism. Bile acids are not only involved in the metabolism of nutrients, but are also important in signal transduction for the regulation of host physiological activities. Microbial-regulated bile acid metabolism has been proven to affect many diseases, but there have not been many studies of disease regulation by microbial receptor signaling pathways. This review considers findings of recent research on the core roles of farnesoid X receptor (FXR), G protein-coupled bile acid receptor (TGR5), and vitamin D receptor (VDR) signaling pathways in microbial-host interactions in health and disease. Studying the relationship between these pathways can help us understand the pathogenesis of human diseases, and lead to new solutions for their treatments.
Bile Acids and Salts/metabolism*
;
Gastrointestinal Microbiome
;
Humans
;
Inflammation/metabolism*
;
Metabolic Syndrome/metabolism*
;
Receptors, Calcitriol/physiology*
;
Receptors, Cytoplasmic and Nuclear/physiology*
;
Receptors, G-Protein-Coupled/physiology*
;
Signal Transduction/physiology*
4.Bile Acid Diarrhea: Prevalence, Pathogenesis, and Therapy.
Gut and Liver 2015;9(3):332-339
Bile acid diarrhea (BAD) is usually seen in patients with ileal Crohn's disease or ileal resection. However, 25% to 50% of patients with functional diarrhea or diarrhea-predominant irritable bowel syndrome (IBS-D) also have evidence of BAD. It is estimated that 1% of the population may have BAD. The causes of BAD include a deficiency in fibroblast growth factor 19 (FGF-19), a hormone produced in enterocytes that regulates hepatic bile acid (BA) synthesis. Other potential causes include genetic variations that affect the proteins involved in BA enterohepatic circulation and synthesis or in the TGR5 receptor that mediates the actions of BA in colonic secretion and motility. BAs enhance mucosal permeability, induce water and electrolyte secretion, and accelerate colonic transit partly by stimulating propulsive high-amplitude colonic contractions. There is an increased proportion of primary BAs in the stool of patients with IBS-D, and some changes in the fecal microbiome have been described. There are several methods of diagnosing BAD, such as 75selenium homotaurocholic acid test retention, serum C4, FGF-19, and fecal BA measurement; presently, therapeutic trials with BA sequestrants are most commonly used for diagnosis. Management involves the use of BA sequestrants including cholestyramine, colestipol, and colesevelam. FXR agonists such as obeticholic acid constitute a promising new approach to treating BAD.
Anticholesteremic Agents/therapeutic use
;
Bile Acids and Salts/*physiology
;
Crohn Disease/complications
;
Diarrhea/*etiology/pathology/therapy
;
Feces/chemistry
;
Fibroblast Growth Factors/deficiency
;
Gastrointestinal Microbiome
;
Humans
;
Irritable Bowel Syndrome/complications
5.Evaluation of the Biodurability of Polyurethane-Covered Stent Using a Flow Phantom.
Dong Hyun KIM ; Sung Gwon KANG ; Jung Ryul CHOI ; Ju Nam BYUN ; Young Chul KIM ; Young Moo AHN
Korean Journal of Radiology 2001;2(2):75-79
OBJECTIVE:To evaluate the biodurability of the covering material in retrievable metallic stents covered with polycarbonate polyurethane. MATERIALS AND METHODS: Using a peristaltic pump at a constant rate of 1ml/min, bile was recirculated from a reservoir through a long tube containing four stents. Each of these was removed from the system every two weeks and a radial tensile strength test and scanning electron microscopy (SEM) were performed. Each stent, removed at 2, 4, 6 and 8 weeks, was compared with a control stent not exposed to bile juice. RESULTS: Gross examination showed that stents were intact at 2 weeks, but at 4, 6 and 8 weeks cracks were observed. The size of these increased gradually in accordance with the duration of exposure, and at 8 weeks several large holes in the polyurethane membrane were evident. With regard to radial tensile strength, extension and peak load at break were 84.47% and 10.030 N/mm, 54.90% and 6.769 N/mm, 16.55% and 2.452 N/mm, 11.21% and 1.373 N/mm at 0, 2, 4 and 6 weeks, respectively. Scanning electron microscopy at 2 weeks revealed intermittent pitting and cracking, and examination at 4, 6 and 8 weeks showed that the size of these defects was gradually increasing. CONCLUSION: When the polyurethane membrane was exposed to bile, biodegradation was first observed at week two and increased gradually according to the duration of exposure.
Bile Acids and Salts/physiology
;
Biodegradation
;
Hydrogen-Ion Concentration
;
Microscopy, Electron, Scanning/*instrumentation
;
Phantoms, Imaging
;
*Polyurethanes
;
*Stents
;
Support, Non-U.S. Gov't
;
Tensile Strength
;
Time Factors
6.Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss.
Anna GAVRIELI ; Christos S MANTZOROS
Endocrinology and Metabolism 2016;31(3):361-372
Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss.
Appetite
;
Bile Acids and Salts
;
Diet
;
Energy Intake
;
Energy Metabolism
;
Fibroblast Growth Factors
;
Gastric Inhibitory Polypeptide
;
Ghrelin
;
Heme Oxygenase-1
;
Homeostasis*
;
Incretins
;
Islet Amyloid Polypeptide
;
Obesity
;
Physiology*
;
Weight Loss*
7.Study on effect of artificial CsB and its components on bile acid metabolism in rats with liver fibrosis and its mechanism.
Xing ZHANG ; Feng-Hua LI ; Ping LIU ; Jia LIU ; Shuang WANG
China Journal of Chinese Materia Medica 2013;38(22):3943-3948
Bile acid is a type of metabolite degraded from cholesterol in liver. Its accumulation in liver could cause liver diseases, liver damage and liver fibrosis. In this experiment, dimethyl nitrosamine (DMN) liver fibrosis was established in rats. The rats were delivered into the normal group, the model group and four treated groups. After the four-week modeling, the treated groups were orally administered with drugs for 2 weeks, whereas the model and normal groups were given equal amount of sterile water at the same time. In the experiment, serum bile acid was taken the as marker, and liver function indexes and changes in bile acid metabolism were detected and observed to identify liver damage-related bile acid targets. It was the first time to evaluate the reverse effect of artificial CsB and its components on liver fibrosis in rats with bile acid metabolic level, and discuss its potential mechanism. The main study contents and results are as follows: a quantitative analysis was made on totally 17 endogenous bile acids, including taurocholic acid conjugated bile acid, glycine conjugated bile acid and free bile acid, and a liver damage evaluation was made for the model according to the detection of serum biochemical indexes and the pathological biopsy. After modeling, ALT, AST activity and TBil content significantly increased, whereas Alb significantly decreased. According to the pathological biopsy HE staining, the model group showed damage in normal hepatic lobule structure, liver cell edema and connective tissue proliferation in portal area; The treated groups showed mitigation in pathological changes to varying degrees. Cordyceps sinensis and its components may impact the bile acid metabolism in rats by activating HDCA, TCA, TCDCA, TLCA, TUDCA, UDCA, THDCA metabolim-related receptors or blocking relevant signaling pathway.
Animals
;
Bile Acids and Salts
;
metabolism
;
Biological Factors
;
administration & dosage
;
Cordyceps
;
chemistry
;
physiology
;
Humans
;
Liver Cirrhosis
;
drug therapy
;
metabolism
;
Male
;
Moths
;
chemistry
;
microbiology
;
Rats
;
Rats, Wistar
8.In Vitro Maintenance of Clonorchis sinensis Adult Worms.
Md Hafiz UDDIN ; Shunyu LI ; Young Mee BAE ; Min Ho CHOI ; Sung Tae HONG
The Korean Journal of Parasitology 2012;50(4):309-315
Clonorchis sinensis is a biological carcinogen inducing human cholangiocarcinoma, and clonorchiasis is one of the important endemic infectious diseases in East Asia. The present study investigated survival longevity of C. sinensis adult worms in various in vitro conditions to find the best way of keeping the worms longer. The worms were maintained in 0.85% NaCl, 1xPBS, 1xLocke's solution, RPMI-1640, DMEM, and IMDM media, and in 1xLocke's solution with different supplements. All of the worms died within 3 and 7 days in 0.85% NaCl and 1xPBS, respectively, but survived up to 57 days in 1xLocke's solution. The worms lived for 106 days in DMEM, and 114 days in both RPMI-1640 and IMDM media. The survival rate in RPMI-1640 medium was the highest (50%) compared to that in DMEM (20+/-10%) and in IMDM (33.3+/-25.2%) after 3 months. The 1xLocke's solution with 0.005% bovine bile supplement showed increased duration of maximum survival from 42 days to 70 days. Higher concentration of bile supplements than 0.005% or addition of glucose were disadvantageous for the worm survival. The worms died rapidly in solutions containing L-aspartic acid, L-glutamic acid, and adenine compared to L-arginine, L-serine, and L-tryptophan. In conclusion, the 1xLocke's solution best supports the worms alive among inorganic solutions for 57 days, and the RPMI-1640 medium maintains living C. sinensis adults better and longer up to 114 days in vitro than other media.
Adenine/metabolism
;
Amino Acids/metabolism
;
Animals
;
Bile/parasitology
;
Bile Acids and Salts/*metabolism
;
Cattle
;
Cell Survival
;
Clonorchiasis/*parasitology
;
Clonorchis sinensis/*growth & development/physiology
;
*Culture Media
;
Cyprinidae
;
Fish Diseases/parasitology
;
Humans
;
Rabbits
;
Rats
;
Time Factors
9.Effect of SC-435 on the gastrointestinal migrating myoelectric complex in guinea pigs.
Xue-mei ZHANG ; Lei DONG ; Li-na LIU ; Ya-mei LEI
Journal of Central South University(Medical Sciences) 2005;30(5):497-503
OBJECTIVE:
To determine whether SC-435, a new ileal apical sodium-codependent bile acid transporter (IBAT) inhibitor, can alter the gastrointestinal motility in guinea pigs.
METHODS:
Sixty guinea pigs received regular diet or IBAT inhibitor (SC-435) diet for 2, 4, and 8 weeks, respectively. At the end of the feeding period, the gallbladder motility was assessed and then four bipolar silver electrodes were implanted on the antrum, duodenum, jejunum, and ileum. Seven days later, migrating motor complex (MMC) was recorded and the total bile acid pool size was measured according to the isotope dilution principle in the meantime.
RESULTS:
After feeding SC435, the gallbladder motility was declined in the 4-week group and the 8-week group. The bile acid pool size decreased by 17.11% (P <0.05) in the 4-week group and 48.35% (P < 0.05) in the 8-week group. The places of origin of MMC were changed where antral origins (37%) and duodenal origins (46%) decreased whereas jejunal origins (17%) increased. The MMC cycle period was prolonged in the duodenum (1.16 times in the 4-week group, P < 0.05; 1.38 times in the 8-week group, P < 0.05) whereas MMC amplitude fell in the duodenum (10.58% in the 4-week group, P <0.05; 49.17% in the 8-week group, P <0.05). There were not significant differences in all parameters of MMC between the control group and the 2-week group in guinea pigs.
CONCLUSION
The IBAT inhibitor (SC-435) reduces the bile acid pool size and inhibits the MMC cycle activity. MMC is related to the enterohepatic circulation of bile acids, which is consistent with the changes of the bile acid pool size in guinea pigs.
Animals
;
Bile Acids and Salts
;
Cyclic N-Oxides
;
pharmacology
;
Female
;
Gallbladder
;
physiology
;
Gastrointestinal Motility
;
drug effects
;
physiology
;
Guinea Pigs
;
Myoelectric Complex, Migrating
;
drug effects
;
Organic Anion Transporters, Sodium-Dependent
;
antagonists & inhibitors
;
Random Allocation
;
Symporters
;
antagonists & inhibitors
;
Tropanes
;
pharmacology
10.Mechanism of gut-microbiota-liver axis in the pathogenesis of intestinal failure-associated liver disease.
Sheng Xian FAN ; Jian WANG ; Qiang LI ; You Sheng LI ; Wen Xian GUAN ; Jie Shou LI
Chinese Journal of Gastrointestinal Surgery 2021;24(1):94-100
Intestinal failure (IF) is defined as the critical reduction of functional intestines below the minimum needed to absorb nutrients and fluids, so that intravenous supplementation with parenteral nutrition (PN) is required to maintain health and/or growth. Although the benefits are evident, patients receiving PN can suffer from serious cholestasis due to lack of enteral feeding and small intestinal bacterial overgrowth (SIBO). One such complication that may arise is intestinal failure-associated liver disease (IFALD). Evidences from recent studies suggest that alterations in the intestinal microbiota, as well as intraluminal bile acid driven signaling, may play a critical role in both hepatic and intestinal injury. Since Marshall first proposed the concept of the gut-liver axis in 1998, the role of gut-liver axis disorders in the development of IFALD has received considerable attention. The conversation between gut and liver is the key to maintain liver metabolism and intestinal homeostasis, which influences each other and is reciprocal causation. However, as a "forgotten organ" , intestinal microbiota on the pathogenesis of IFALD has not been well reflected. As such, we propose, for the first time, the concept of gut-microbiota-liver axis to emphasize the importance of intestinal microbiota in the interaction of gut-liver axis. Analysis and research on gut-microbiota-liver axis will be of great significance for understanding the pathogenesis of IFALD and improving the prevention and treatment measures.
Bacterial Infections/physiopathology*
;
Bile Acids and Salts/physiology*
;
Cholestasis/physiopathology*
;
Enteral Nutrition
;
Gastrointestinal Microbiome/physiology*
;
Humans
;
Intestinal Diseases/physiopathology*
;
Intestines/physiopathology*
;
Liver/physiopathology*
;
Liver Diseases/physiopathology*
;
Parenteral Nutrition/adverse effects*
;
Short Bowel Syndrome/physiopathology*
;
Signal Transduction