1.Modulation of the activities and mRNA expression of cytochrome P450 isoenzymes in rat liver by Panax gingseng and coadministration with Veratrum nigrum.
Yu-guang WANG ; Yue GAO ; Biao-xin CHAI ; Peng CHEN ; Hong-ling TAN ; Yong-hong ZHAO ; Cheng-rong XIAO ; Yuan-yuan SUN ; Li-jun ZHU
China Journal of Chinese Materia Medica 2004;29(4):366-370
OBJECTIVETo study the modulatory effect of Panax gingseng and coadministration with Veratrum nigrum on the activity and mRNA expression of cytochrome P450 isoenzymes in rat liver.
METHODRat liver microsomal cytochrome P450, b5, aminopyrine N-demethylase(APND), p-nitrophenol-hydroxylase(pNPH)activities were quantitated by UV chromatography. The mRNA expression level of five CYP isoenzymes CYP1A1, CYP2B1/2, CYP2C11, CYP2E1 and CYP3A1 were detected by semi-quantitative reverse transcriptase-polymerase chain reaction(RT-PCR).
RESULTP. gingseng coadministrated with V. nigrum obviously decreased the P450 contents of liver microsomes, and the b5 contents. Both single and combined used inhibited the activities of aminopyrine N-demethylase. At the mRNA level, the expression of CYP2C11 markedly induced exposure to V. nigrum, but combinative groups decreased the expression of CYP2C11. The combination of P. gingseng and V. nigrum induced the expression of CYP1A1. P. gingseng has inhibitory effect on CYP2B1/2 and inductive effect used with V. nigrum. The combination of P. gingseng with V. nigrum also induced the expression of CYP3A1.
CONCLUSIONP. gingseng used singly has some different modulation effects compared with combinative used, which may occur because of drug-drug interaction based on cytochrome P450. To elucidate the drug-drug interaction, it needs further analysis and metabolism research.
Aminopyrine N-Demethylase ; metabolism ; Animals ; Cytochrome P-450 Enzyme System ; biosynthesis ; genetics ; Cytochromes b5 ; metabolism ; Drug Incompatibility ; Drugs, Chinese Herbal ; isolation & purification ; pharmacology ; Female ; In Vitro Techniques ; Isoenzymes ; biosynthesis ; genetics ; Male ; Microsomes, Liver ; metabolism ; Panax ; chemistry ; RNA, Messenger ; biosynthesis ; genetics ; Rats ; Rats, Wistar ; Veratrum ; chemistry
2.Analysis of the mechanism of phellodendron amurense polysaccharide in the treatment of liver injury based on network pharmacology and in vivo experiments
Juan XUE ; Xin YANG ; Gongrou MO ; Longjiang LIU ; Biao CHEN ; Huifang CHAI
Acta Universitatis Medicinalis Anhui 2024;59(2):267-274
Objective To analyze the effect and molecular mechanism of phellodendron amurense in the treatment of liver injury based on network pharmacology,and to verify the relevant prediction targets and the protective effect of phellodendron amurense extract-Phellodendron amurense polysaccharide on immune liver injury through mice.Methods TCMSP and Swiss target prediction databases were used to retrieve and screen phellodendron amurenses active components and action targets,and then obtain disease-related targets on GeneCards and OMIM websites,and take compounds and disease intersection targets for protein interaction.Analysis,GO biological function and KEGG signaling pathway enrichment analysis,followed by molecular docking of compounds and key target proteins,and finally established a mouse liver injury model induced by Daodou protein A(Con A)to explore the mechanism of phellodendron amurense extract in the treatment of liver injury.Results 37 active ingredients were screened.The key targets for their treatment were tumor necrosis factor α(TNF-α),serine/threonine protein kinase 1(AKT1),signal transduction and transcription activation factor 3(STAT3),epidermal growth factor receptor(EGFR)anditin.Enzyme 3(CASP3)and other enrichment analysis showed that phellodendron amurense might play a protective role in protecting the liver through molecular mechanisms such as positive regulation of MAPK cas-cade reaction,oxidative stress response and regulatory PI3K-Akt signaling pathway,lipid and atherosclerosis.Ani-mal experiments had found that the gastric treatment of phellodendron amurense polysaccharide could improve the activity of superoxide dismutase(SOD)and catalase(CAT)in liver tissue,reduce the levels of serum alkaline phosphatase(ALP),aspartate aminotransferase(AST)and malonaldehyde(MDA)in liver tissue,and regulate serum inflammatory factor while the expression of intercitin(IL)-6,IL-1 β,tumor necrosis factor α(TNF-α),ac-tivated the expression of transforming growth factor β1(TGF-β1),and reduced TNF-α mRNA expression in liver tissue.Conclusion Phellodendron amurense can intervene in lipid and atherosclerosis pathways by acting on tar-gets such as TNF-α,AKT1,STAT3,EGFR and CASP3 to reduce oxidative stress and inflammatory reactions and achieve liver protection.