1.Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review
Kai Wen WAI ; Liang Ee LOW ; Bey Hing GOH ; Wei Hsum YAP
Journal of Lipid and Atherosclerosis 2024;13(3):292-305
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, all of which contribute significantly to foam cell development and plaque formation. Nrf2 has recently emerged as a key regulator that connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular mechanism involved in the breakdown and recycling of damaged proteins and organelles, and cellular senescence, a state of irreversible growth arrest, are both processes implicated in the pathogenesis of atherosclerosis. The intricate interplay of these processes has received increasing attention, shedding light on their cumulative role in driving the development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation promotes autophagy, which increases lipid clearance and prevents the development of foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating the expression of senescence markers to preserve cellular homeostasis and function and delay the progression of atherosclerosis. This review provides an overview of the molecular mechanisms through which Nrf2 connects cellular autophagy and vascular senescence in atherosclerosis. Understanding these mechanisms can provide insights into potential therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, thereby preventing the progression of atherosclerosis.
2.Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review
Kai Wen WAI ; Liang Ee LOW ; Bey Hing GOH ; Wei Hsum YAP
Journal of Lipid and Atherosclerosis 2024;13(3):292-305
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, all of which contribute significantly to foam cell development and plaque formation. Nrf2 has recently emerged as a key regulator that connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular mechanism involved in the breakdown and recycling of damaged proteins and organelles, and cellular senescence, a state of irreversible growth arrest, are both processes implicated in the pathogenesis of atherosclerosis. The intricate interplay of these processes has received increasing attention, shedding light on their cumulative role in driving the development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation promotes autophagy, which increases lipid clearance and prevents the development of foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating the expression of senescence markers to preserve cellular homeostasis and function and delay the progression of atherosclerosis. This review provides an overview of the molecular mechanisms through which Nrf2 connects cellular autophagy and vascular senescence in atherosclerosis. Understanding these mechanisms can provide insights into potential therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, thereby preventing the progression of atherosclerosis.
3.Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review
Kai Wen WAI ; Liang Ee LOW ; Bey Hing GOH ; Wei Hsum YAP
Journal of Lipid and Atherosclerosis 2024;13(3):292-305
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, all of which contribute significantly to foam cell development and plaque formation. Nrf2 has recently emerged as a key regulator that connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular mechanism involved in the breakdown and recycling of damaged proteins and organelles, and cellular senescence, a state of irreversible growth arrest, are both processes implicated in the pathogenesis of atherosclerosis. The intricate interplay of these processes has received increasing attention, shedding light on their cumulative role in driving the development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation promotes autophagy, which increases lipid clearance and prevents the development of foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating the expression of senescence markers to preserve cellular homeostasis and function and delay the progression of atherosclerosis. This review provides an overview of the molecular mechanisms through which Nrf2 connects cellular autophagy and vascular senescence in atherosclerosis. Understanding these mechanisms can provide insights into potential therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, thereby preventing the progression of atherosclerosis.
4.Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review
Kai Wen WAI ; Liang Ee LOW ; Bey Hing GOH ; Wei Hsum YAP
Journal of Lipid and Atherosclerosis 2024;13(3):292-305
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, all of which contribute significantly to foam cell development and plaque formation. Nrf2 has recently emerged as a key regulator that connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular mechanism involved in the breakdown and recycling of damaged proteins and organelles, and cellular senescence, a state of irreversible growth arrest, are both processes implicated in the pathogenesis of atherosclerosis. The intricate interplay of these processes has received increasing attention, shedding light on their cumulative role in driving the development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation promotes autophagy, which increases lipid clearance and prevents the development of foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating the expression of senescence markers to preserve cellular homeostasis and function and delay the progression of atherosclerosis. This review provides an overview of the molecular mechanisms through which Nrf2 connects cellular autophagy and vascular senescence in atherosclerosis. Understanding these mechanisms can provide insights into potential therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, thereby preventing the progression of atherosclerosis.
5.Butyrylcholinesterase Inhibitory Activity and GC-MS Analysis of Carica papaya Leaves
Kooi-Yeong KHAW ; Nelson Jeng YEOU CHEAR ; Sathiya MARAN ; Keng Yoon YEONG ; Yong Sze ONG ; Bey Hing GOH
Natural Product Sciences 2020;26(2):165-170
Carica papaya is a medicinal and fruit plant owing biological activities including antioxidant, antiviral, antibacterial and anticancer. The present study aims to investigate the acetyl (AChE) and butyryl (BChE) cholinesterase inhibitory potentials of C. papaya extracts as well as their chemical compositions. The chemical composition of the active extract was identified using a gas chromatography-mass spectrometry (GCMS). Ellman enzyme inhibition assay showed that the alkaloid-enriched leaf extract of C. papaya possessed significant anti-BChE activity with an enzyme inhibition of 75.9%. GC-MS analysis showed that the alkaloid extract composed mainly the carpaine (64.9%) – a major papaya alkaloid, and some minor constituents such as aliphatic hydrocarbons, terpenes and phenolics. Molecular docking of carpaine revealed that this molecule formed hydrogen bond and hydrophobic interactions with choline binding site and acyl pocket. This study provides some preliminary findings on the potential use of C. papaya leaf as an herbal supplement for the prevention and treatment of Alzheimer’s disease.
6. Convalescent plasma: A potential therapeutic option for COVID-19 patients
Swee Li NG ; Bey Hing GOH ; Tsuey Ning SOON ; Wei Hsum YAP ; Yin-Quan TANG ; Kai Bin LIEW ; Ya Chee LIM ; Long Chiau MING ; Bey Hing GOH
Asian Pacific Journal of Tropical Medicine 2020;13(11):477-486
The new coronavirus disease (COVID-19) outbreak has challenged us to take unprecedented steps to bring this pandemic under control. In view of the urgency of this situation, convalescent plasma which was used in previous coronavirus outbreaks has emerged as one of the treatment options in this current pandemic. This is mainly due to the fact that convalescent plasma has been studied in a few case series with promising outcomes. In addition, on-going large clinical trials aimed to further evaluate the effectiveness, safety, and optimal dosage, duration and timing of administration of convalescent plasma are indeed revealing a certain level of promising results. Therefore, this article aims to provide an overview of possible mechanisms of actions of convalescent plasma, its benefits and its level of usage safeness by summarizing the existing evidence on the use of convalescent plasma in COVID-19 patients.