1.Differences of the structure, succession and function of Clostridial communities between jiupei and pit mud during Luzhou-flavour baijiu fermentation.
Wei QIAN ; Zhenming LU ; Lijuan CHAI ; Xiaojuan ZHANG ; Pengxiang XU ; Qi LI ; Songtao WANG ; Caihong SHEN ; Jinsong SHI ; Zhenghong XU
Chinese Journal of Biotechnology 2020;36(6):1190-1197
Clostridia inhabiting in jiupei and pit mud plays key roles in the formation of flavour during the fermentation process of Luzhou-flavour baijiu. However, the differences of Clostridial communities between jiupei and pit mud remains unclear. Here, the species assembly, succession, and metabolic capacity of Clostridial communities between jiupei and pit mud were analysed by high-throughput sequencing and pure culture approaches. The ratio of Clostridial biomass to bacterial biomass in the pit mud was relatively stable (71.5%-91.2%) throughout the fermentation process. However, it varied widely in jiupei (0.9%-36.5%). The dominant Clostridial bacteria in jiupei were Clostridium (19.9%), Sedimentibacter (8.8%), and Hydrogenispora (7.2%), while Hydrogenispora (57.2%), Sedimentibacter (5.4%), and Caproiciproducens (4.9%) dominated in the Clostridial communities in pit mud. The structures of Clostridial community in pit mud and jiupei were significantly different (P=0.001) throughout fermentation. Isolated Clostridial strains showed different metabolic capacities of volatile fatty acids in pure culture. Spatial and temporal heterogeneity of Clostridial communities existed in the baijiu fermentation pit, which was closely related to the main flavour components of Luzhou-flavour baijiu.
Alcoholic Beverages
;
microbiology
;
Bacteria
;
classification
;
metabolism
;
Clostridium
;
physiology
;
Fatty Acids, Volatile
;
metabolism
;
Fermentation
;
Food Microbiology
2.Effect of Lactobacillus coryniformis FZU63 on the flavor quality of black tea beverage.
Ruili LI ; Yifeng LIU ; Weibo LUO ; Huilin HUANG ; Meiting HUANG ; Chi CHEN ; Ronghui XIAO ; Jinzhi HAN ; Xucong LÜ
Chinese Journal of Biotechnology 2022;38(12):4731-4743
The tea beverages will be endowed with distinct aroma and taste, as well as various biologically active compounds including probiotic factors, when fermented with lactic acid bacteria (LAB). However, at present, few studies on the dynamics of flavors in tea soup at different fermentation stages were conducted. In this study, the composition of monosaccharides, aromatic components, free amino acids, and organic acids were measured, when the black tea beverages were fermented with Lactobacillus coryniformis FZU63 which was isolated from Chinese traditional kimchi. The results indicated that monosaccharides including glucose, fructose, mannose and xylose in black tea beverages are the main carbon sources for fermentation. In addition, the abundance of aromatic compounds in black tea soup are increased significantly at different fermentation stages, which endow the fermented black tea soup with fruit aroma on the basis of flowery and nutty aroma. Moreover, some bitter amino acids are reduced, whereas the content of sweet and tasty amino acids is elevated. Furthermore, the levels of lactic acid, malic acid, citric acid and other organic acids are accumulated during the fermentation. Additionally, sensory evaluation displays that black tea beverage is acquired with comprehensive high-quality after being fermented for 48 h. This study provides a theoretical basis to steer and control the flavor formation and quality of the fermented tea beverages during LAB fermentation.
Tea/chemistry*
;
Beverages/microbiology*
;
Camellia sinensis
;
Fermentation
;
Acids
;
Amino Acids
;
Glucose