1.Histological Method to Study the Effect of Shear Stress on Cell Proliferation and Tissue Morphology in a Bioreactor
Morgan CHABANON ; Hervé DUVAL ; Jérôme GRENIER ; Claire BEAUCHESNE ; Benoit GOYEAU ; Bertrand DAVID
Tissue Engineering and Regenerative Medicine 2019;16(3):225-235
BACKGROUND: Tissue engineering represents a promising approach for the production of bone substitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a three-dimensional porous scaffold resolves mass transport limitations and provides mechanical stimuli. Despite the recent and important development of bioreactors for tissue engineering, the underlying mechanisms leading to the production of bone substitutes remain poorly understood. METHODS: In order to study cell proliferation in a perfusion bioreactor, we propose a simplified experimental set-up using an impermeable scaffold model made of 2 mm diameter glass beads on which mechanosensitive cells, NIH-3T3 fibroblasts are cultured for up to 3 weeks under 10 mL/min culture medium flow. A methodology combining histological procedure, image analysis and analytical calculations allows the description and quantification of cell proliferation and tissue production in relation to the mean wall shear stress within the bioreactor. RESULTS: Results show a massive expansion of the cell phase after 3 weeks in bioreactor compared to static control. A scenario of cell proliferation within the three-dimensional bioreactor porosity over the 3 weeks of culture is proposed pointing out the essential role of the contact points between adjacent beads. Calculations indicate that the mean wall shear stress experienced by the cells changes with culture time, from about 50 mPa at the beginning of the experiment to about 100 mPa after 3 weeks. CONCLUSION: We anticipate that our results will help the development and calibration of predictive models, which rely on estimates and morphological description of cell proliferation under shear stress.
Bioreactors
;
Bone Substitutes
;
Calibration
;
Cell Proliferation
;
Fibroblasts
;
Glass
;
Methods
;
NIH 3T3 Cells
;
Perfusion
;
Porosity
;
Tissue Engineering
2.Evaluation and treatment of facial feminization surgery: part I. forehead, orbits, eyebrows, eyes, and nose
Brian N. DANG ; Allison C. HU ; Anthony A. BERTRAND ; Candace H. CHAN ; Nirbhay S. JAIN ; Miles J. PFAFF ; James C. LEE ; Justine C. LEE
Archives of Plastic Surgery 2021;48(5):503-510
Facial feminization surgery (FFS) incorporates aesthetic and craniofacial surgical principles and techniques to feminize masculine facial features and facilitate gender transitioning. A detailed understanding of the defining male and female facial characteristics is essential for success. In this first part of a two-part series, we discuss key aspects of the general preoperative consultation that should be considered when evaluating the prospective facial feminization patient. Assessment of the forehead, orbits, hairline, eyebrows, eyes, and nose and the associated procedures, including scalp advancement, supraorbital rim reduction, setback of the anterior table of the frontal sinus, rhinoplasty, and soft tissue modifications of the upper and midface are discussed. In the second part of this series, bony manipulation of the midface, mandible, and chin, as well as soft tissue modification of the nasolabial complex and chondrolaryngoplasty are discussed. Finally, a review of the literature on patient-reported outcomes in this population following FFS is provided.
3.Evaluation and treatment of facial feminization surgery: part I. forehead, orbits, eyebrows, eyes, and nose
Brian N. DANG ; Allison C. HU ; Anthony A. BERTRAND ; Candace H. CHAN ; Nirbhay S. JAIN ; Miles J. PFAFF ; James C. LEE ; Justine C. LEE
Archives of Plastic Surgery 2021;48(5):503-510
Facial feminization surgery (FFS) incorporates aesthetic and craniofacial surgical principles and techniques to feminize masculine facial features and facilitate gender transitioning. A detailed understanding of the defining male and female facial characteristics is essential for success. In this first part of a two-part series, we discuss key aspects of the general preoperative consultation that should be considered when evaluating the prospective facial feminization patient. Assessment of the forehead, orbits, hairline, eyebrows, eyes, and nose and the associated procedures, including scalp advancement, supraorbital rim reduction, setback of the anterior table of the frontal sinus, rhinoplasty, and soft tissue modifications of the upper and midface are discussed. In the second part of this series, bony manipulation of the midface, mandible, and chin, as well as soft tissue modification of the nasolabial complex and chondrolaryngoplasty are discussed. Finally, a review of the literature on patient-reported outcomes in this population following FFS is provided.
4.Evaluation and treatment of facial feminization surgery: part II. lips, midface, mandible, chin, and laryngeal prominence
Brian N. DANG ; Allison C. HU ; Anthony A. BERTRAND ; Candace H. CHAN ; Nirbhay S. JAIN ; Miles J. PFAFF ; James C. LEE ; Justine C. LEE
Archives of Plastic Surgery 2022;49(1):5-11
Facial feminization surgery (FFS) refers to a set of procedures aimed at altering the features of a masculine face to achieve a more feminine appearance. In the second part of this twopart series, assessment and operations involving the midface, mandible, and chin, as well as soft tissue modification of the nasolabial complex and chondrolaryngoplasty, are discussed. Finally, we provide a review of the literature on patient-reported outcomes in this population following FFS and suggest a path forward to optimize care for FFS patients.