1.Effects of different application amounts of potassium fulvic acid on yield and quality of Fritillaria thunbergii.
Xiao-Ping LANG ; Jian SUN ; Xiao-Xia SHEN ; Zhi-An WANG
China Journal of Chinese Materia Medica 2020;45(1):72-77
Fritillaria thunbergii is a commonly used traditional Chinese medicine, which has the effects of clearing heat and resolving stagnation, eliminating phlegm and relieving cough. At present, it is mostly produced by cultivation, and the cultivation process requires application of base fertilizer, winter fertilizer, seedling fertilizer and late top dressing. Now farmyard manure or organic fertilizer can be used to replace the base fertilizer and winter fertilizer, but the research on the replacement of organic fertilizer has not been completed for the late top dressing. Potassium fulvate is a kind of fulvate fertilizer, which can not only regulate the growth of crops but also supplement potassium necessary for the growth of crops. In this paper, using F. thunbergii as a model plant with mature cultivation techniques, the effect of potassium fulvate on the quality and yield of rhizome traditional Chinese medicine F. thunbergii was systematically studied for the first time. HPLC-ELSD was used to determine the contents of peimine A and peimine B, hot dip method was used to determine the content of alcohol extract, and the SPAD-502 Plus chlorophyll meter was used to detect SPAD value. The results showed that applying 1.5 to 2.25 kg·hm~(-2) of potassium fulvic acid per hectare could effectively improve the yield of F. thunbergii and there was significantly difference between potassium phosphate monobasic and potassium fulvic acid in terms of quality. After the application of range 1.5 to 2.25 kg·hm~(-2) of potassium fulvic acid per hectare, the content of alcohol soluble extract of F. thunbergii was ranged 21.61% to 22.27%, the total amount of peimine A and peimine B were ranged 0.09% to 0.10%. Applying 1.5 to 2.25 kg·hm~(-2) of potassium fulvic acid per hectare could replace the conventional pure chemical fertilizer potassium phosphate monobasic, which could be used as top dressing fertilizer for the cultivation of F. thunbergii.
Benzopyrans/administration & dosage*
;
Fertilizers
;
Fritillaria/chemistry*
;
Phytochemicals/analysis*
;
Potassium/administration & dosage*
2.Comparative pharmacokinetics of bergenin, a main active constituent of Saxifraga stolonifera Curt., in normal and hepatic injury rats after oral administration.
Rong-Hua PAN ; Hong-Mei HE ; Yue DAI ; Yu-Feng XIA
Chinese Journal of Natural Medicines (English Ed.) 2016;14(10):776-782
Bergenin, isolated from the herb of Saxifrage stolonifera Curt. (Hu-Er-Cao) has hepatoprotective, anti-inflammatory, antitussive, and neuroprotective activities. The aim of the present study was to establish a simple, rapid, and sensitive RP-HPLC method for determination of bergenin in rat plasma and compare its oral pharmacokinetic behaviors in normal and CCl-induced hepatic injury rats. With norisoboldine as an internal standard, chromatographic separation was performed on a C analytical column with acetonitrile and water (11 : 89, V/V) containing 0.1% formic acid as the mobile phase. A good linearity was obtained over the range of 100-10 000 ng·mL. The lower limit of quantification was 50 ng·mL. The developed method was successfully applied to a study of the pharmacokinetic difference of bergenin (100 mg·kg) between normal and hepatic injury rats after oral administration. Marked alterations of pharmacokinetic parameters in hepatic injury rats were observed. Compared to normal rats, the AUC of bergenin in hepatic injury rats was elevated to 2.11-fold and C was increased by 130%, whereas CL value was only 55% of the normal rats, suggesting that the systemic exposure of bergenin was significantly increased under hepatic injury status.
Animals
;
Benzopyrans
;
administration & dosage
;
pharmacokinetics
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Chromatography, High Pressure Liquid
;
Chromatography, Liquid
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacokinetics
;
Humans
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Saxifragaceae
;
chemistry
;
Tandem Mass Spectrometry
;
methods
3.The Toxicity of Nonsteroidal Anti-inflammatory Eye Drops against Human Corneal Epithelial Cells in Vitro.
Jong Soo LEE ; Young Hi KIM ; Young Min PARK
Journal of Korean Medical Science 2015;30(12):1856-1864
This study investigated the toxicity of commercial non-steroid anti-inflammatory drug (NSAID) eye solutions against corneal epithelial cells in vitro. The biologic effects of 1/100-, 1/50-, and 1/10-diluted bromfenac sodium, pranoprofen, diclofenac sodium, and the fluorometholone on corneal epithelial cells were evaluated after 1-, 4-, 12-, and 24-hr of exposure compared to corneal epithelial cell treated with balanced salt solution as control. Cellular metabolic activity, cellular damage, and morphology were assessed. Corneal epithelial cell migration was quantified by the scratch-wound assay. Compared to bromfenac and pranoprofen, the cellular metabolic activity of diclofenac and fluorometholone significantly decreased after 12-hr exposure, which was maintained for 24-hr compared to control. Especially, at 1/10-diluted eye solution for 24-hr exposure, the LDH titers of fluorometholone and diclofenac sodium markedly increased more than those of bromfenac and pranoprofen. In diclofenac sodium, the Na+ concentration was lower and amount of preservatives was higher than other NSAIDs eye solutions tested. However, the K+ and Cl- concentration, pH, and osmolarity were similar for all NSAIDs eye solutions. Bromfenac and pranoprofen significantly promoted cell migration, and restored wound gap after 48-hr exposure, compared with that of diclofenac or fluorometholone. At 1/50-diluted eye solution for 48-hr exposure, the corneal epithelial cellular morphology of diclofenac and fluorometholone induced more damage than that of bromfenac or pranoprofen. Overall, the corneal epithelial cells in bromfenac and pranoprofen NSAID eye solutions are less damaged compared to those in diclofenac, included fluorometholone as steroid eye solution.
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage/*toxicity
;
Benzophenones/administration & dosage/toxicity
;
Benzopyrans/administration & dosage/toxicity
;
Bromobenzenes/administration & dosage/toxicity
;
Cell Movement/drug effects
;
Cells, Cultured
;
Diclofenac/administration & dosage/toxicity
;
Epithelial Cells/drug effects/metabolism/ultrastructure
;
Epithelium, Corneal/cytology/*drug effects/metabolism
;
Fluorometholone/administration & dosage/toxicity
;
Humans
;
L-Lactate Dehydrogenase/metabolism
;
Microscopy, Electron, Transmission
;
Ophthalmic Solutions
;
Propionates/administration & dosage/toxicity
4.Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression.
Xiao-Jin YAN ; Yu-Shuang CHAI ; Zhi-Yi YUAN ; Xin-Pei WANG ; Jing-Fei JIANG ; Fan LEI ; Dong-Ming XING ; Li-Jun DU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):354-362
Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.
Animals
;
Benzopyrans
;
administration & dosage
;
Brain Ischemia
;
drug therapy
;
genetics
;
immunology
;
metabolism
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
administration & dosage
;
Glucose
;
metabolism
;
Humans
;
Indenes
;
administration & dosage
;
Male
;
Mice
;
Mice, Inbred ICR
;
Neurons
;
drug effects
;
immunology
;
Nod2 Signaling Adaptor Protein
;
genetics
;
metabolism
;
Oxygen
;
metabolism
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
5.Effect of brazilein on energy metabolism of cerebral ischemia-reperfusion in mice.
Huiying LI ; Yunyun CHEN ; Fan LEI ; Jun HU ; Jiaqi LAN ; Yushuang CHAI ; Dongming XING ; Lijun DU
China Journal of Chinese Materia Medica 2010;35(18):2444-2448
OBJECTIVETo investigate brazilein's role in energy metabolism of cerebral ischemia-reperfusion in mice.
METHODFourty mice were randomly divided into the sham group, ischemia group, brazilein 5 mg x kg(-1) group and brazilein 10 mg x kg(-1) group, each with ten cases. Cerebral ischemia model was the built. Mice were injected with brazilein three days before the operation, then they were killed. Cerebrum homogenate was prepared for the detecting of ATP, ADP, AMP and lactic acid by HPLC, expressions of MCT1 and MCT2 in mRNA level by RT-PCR.
RESULTThe lactic acid in cerebrum increased sharply 20 minutes after cerebral ischemia and decreased 1 hour after reperfusion, then returned to the normal level 24 hours after reperfusion. The charge of energy decreased significantly at the beginning of the ischemia-reperfusion, and the charge restored 1 hour after reperfusion though it was still much lower than the normal level at the time point of 24 hours. Moreover, MCT1 and MCT2 upregulated accompanied with the increase of lactate, MCT2 mRNA enhanced in brazilein 5 mg x kg(-1) group (P < 0.05) while both the two factors increased in brazilein 10 mg x kg(-1) group (P < 0.01).
CONCLUSIONBrazilein might protect neurons by changing the charge of energy.
Animals ; Benzopyrans ; administration & dosage ; Brain Ischemia ; drug therapy ; genetics ; metabolism ; Disease Models, Animal ; Energy Metabolism ; drug effects ; Gene Expression ; drug effects ; Humans ; Indenes ; administration & dosage ; Male ; Mice ; Mice, Inbred ICR ; Monocarboxylic Acid Transporters ; genetics ; metabolism ; Random Allocation ; Reperfusion Injury ; drug therapy ; genetics ; metabolism ; Symporters ; genetics ; metabolism