1.Cancer Therapy with Phytochemicals: Present and Future Perspectives.
Biomedical and Environmental Sciences 2015;28(11):808-819
Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer properties of compounds derived from edible plants, while very little is known about those derived from non-edible plants. And thus, the underlying mechanisms of their anti-cancer effects are yet to be elucidated. This review collates the available data on the anti-cancer activities of six phytochemical-derived compounds from edible and non-edible plants, i.e. rottlerin, berbamine, sparstolonin B, sulforaphane, plumbagin and 6-shogaol. These compounds are used as bioactive markers for cytotoxicity against tumors. As such, understanding their mode of action will provide the rationale for the combination strategies of these compounds with other drugs in the battle against cancer.
Acetophenones
;
pharmacology
;
therapeutic use
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
Benzopyrans
;
pharmacology
;
therapeutic use
;
Benzylisoquinolines
;
pharmacology
;
therapeutic use
;
Catechols
;
pharmacology
;
therapeutic use
;
Heterocyclic Compounds, 4 or More Rings
;
pharmacology
;
therapeutic use
;
Humans
;
Isothiocyanates
;
pharmacology
;
therapeutic use
;
Naphthoquinones
;
pharmacology
;
therapeutic use
;
Neoplasms
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Signal Transduction
;
drug effects
2.Synthesis and cytotoxic activity of 3, 4, 11-trihydroxyl modified derivatives of bergenin.
De-Biao YAN ; Dong-Ping ZHANG ; Ming LI ; Wen-Yuan LIU ; Feng FENG ; Bin DI ; Qing-Long GUO ; Ning XIE
Chinese Journal of Natural Medicines (English Ed.) 2014;12(12):929-936
To synthesize a series of 3-, 4-, and/or 11-trihydroxy modified bergenin derivatives and evaluated their cytotoxic activity in vitro. The phenolic hydroxyl groups of bergenin were protected by benzyl groups with benzyl bromide. Treatment of dibenzyl bergenin with the corresponding acid in the presence of EDC·HCl and DMAP in CH2Cl2, followed by hydrogenation over Pd/C catalysts, afforded derivatives of bergenin esters. All of the target compounds were identified by IR, MS, and (1)H NMR. Twenty-six novel and three known derivatives of bergenin esters were synthesized. Their cytotoxicity values were evaluated by the MTT assay on the inhibition of DU-145 and BGC-823 cells in vitro. Several triply-substituted (3a, 4a, 5a, 6a, 7a) and doubly-substituted (8b, 9b) bergenin derivatives exhibited higher cytotoxic activity than bergenin. The result showed that the size of substituents and the lipophilicity of the bergenin esters displayed an important role on their cytotoxic activity.
Antineoplastic Agents, Phytogenic
;
chemical synthesis
;
pharmacology
;
therapeutic use
;
Benzopyrans
;
pharmacology
;
therapeutic use
;
Cell Line, Tumor
;
Dipterocarpaceae
;
chemistry
;
Humans
;
Male
;
Molecular Structure
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Prostatic Neoplasms
;
drug therapy
;
Stomach Neoplasms
;
drug therapy
;
Structure-Activity Relationship
3.Inhibitory activities of Lignum Sappan extractives on growth and growth-related signaling of tumor cells.
Qing ZHANG ; Jing-Li LIU ; Xiao-Man QI ; Chun-Ting QI ; Qiang YU
Chinese Journal of Natural Medicines (English Ed.) 2014;12(8):607-612
AIM:
To investigate the active constituents of Lignum Sappan (Caesalpinia sappan L.) on growth-related signaling and cell mitosis.
METHOD:
The influence of the ethyl acetate (EtOAc) extract of Lignum Sappan and its constituents on growth-related signaling were evaluated by a luciferase assay in cells stably-transfected with NF-κB, STAT1, or STAT3 responsive luciferase reporter plasmid. The inhibitory effect on the cell cycle was determined by flow cytometric analysis. The anti-tumor activities were assessed in vitro and in vivo.
RESULTS:
The EtOAc extract of Lignum Sappan had inhibitory activities on growth-related signaling and cell mitosis. Three major active compounds were sappanchalcone, brazilin, and butein. Sappanchalcone blocked cell cycle progression in the G2/M phase, brazilin inhibited TNFα/NF-κB signaling, while butein inhibited IL-6/STAT3 signaling, as well as TNFα/NF-κB signaling. The three compounds all demonstrated cytotoxic activities against human tumor cells in vitro. In a S180 tumor cell-bearing mice model, the anti-tumor efficacy of the EtOAc extract was better than the individual compounds acting alone.
CONCLUSION
These results indicate that Lignum Sappan contains multiple active compounds with different antitumor activities, which act synergistically to enhance their anti-tumor effects. The EtOAc extract of Lignum Sappan may be better than individual active constituent as a novel medicine for the treatment of cancer.
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
Benzopyrans
;
pharmacology
;
therapeutic use
;
Caesalpinia
;
Cell Cycle Checkpoints
;
drug effects
;
Chalcones
;
pharmacology
;
therapeutic use
;
Hep G2 Cells
;
Humans
;
Interleukin-6
;
metabolism
;
Male
;
Mice, Inbred BALB C
;
Mitosis
;
drug effects
;
NF-kappa B
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
STAT3 Transcription Factor
;
metabolism
;
Sarcoma
;
drug therapy
;
metabolism
;
Signal Transduction
;
Tumor Necrosis Factor-alpha
;
metabolism
4.KR-31543 reduces the production of proinflammatory molecules in human endothelial cells and monocytes and attenuates atherosclerosis in mouse model.
Jae Hoon CHOI ; Ji Young YOO ; Sun Ok KIM ; Sung Eun YOO ; Goo Taeg OH
Experimental & Molecular Medicine 2012;44(12):733-739
KR-31543, (2S, 3R, 4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethyoxymethyl-3-hydroxy-2-methyl-2H-1-benz opyran is a new neuroprotective agent for ischemia-reperfusion damage. It has also been reported that KR-31543 has protective effects on lipid peroxidation and H2O2-induced reactive oxygen species production. In this study, we investigated the anti-inflammatory and anti-atherogenic properties of KR-31543. We observed that KR-31543 treatment reduced the production of MCP-1, IL-8, and VCAM-1 in HUVECs, and of MCP-1 and IL-6 in THP-1 human monocytes. We also examined the effect of KR-31543 on monocytes migration in vitro. KR-31543 treatment effectively reduced the migration of THP-1 human monocytes to the HUVEC monolayer in a dose-dependent manner. We next examined the effects of this compound on atherogenesis in LDL receptor deficient (Ldlr-/-) mice. After 10 weeks of western diet, the formation of atherosclerotic lesion in aorta was reduced in the KR-31543-treated group compared to the control group. The accumulation of macrophages in lesion was also reduced in KR-31543 treated group. However, the plasma levels of total cholesterol, HDL, LDL, and triglyceride were not affected by KR-31543 treatment. Taken together, these results show that KR-31543 has anti-inflammatory properties on human monocytes and endothelial cells, and inhibits fatty streak lesion formation in mouse model of atherosclerosis, suggesting the potential of KR-31543 for the treatment for atherosclerosis.
Animals
;
Aorta/pathology
;
Atherosclerosis/blood/*drug therapy/pathology
;
Benzopyrans/*pharmacology/therapeutic use
;
Cholesterol, HDL/blood
;
Cholesterol, LDL/blood
;
Diet
;
Disease Models, Animal
;
Human Umbilical Vein Endothelial Cells/drug effects/metabolism
;
Inflammation Mediators/*metabolism
;
Interleukin-6/metabolism
;
Interleukin-8/metabolism
;
Macrophages/metabolism
;
Mice
;
Mice, Transgenic
;
Monocytes/drug effects/*metabolism
;
Neuroprotective Agents/*pharmacology/therapeutic use
;
Receptors, CCR2/metabolism
;
Receptors, LDL/genetics
;
Tetrazoles/*pharmacology/therapeutic use
;
Transendothelial and Transepithelial Migration/drug effects
;
Triglycerides/blood
;
Vascular Cell Adhesion Molecule-1/metabolism
5.KR-31831, a new synthetic anti-ischemic agent, inhibits in vivo and in vitro angiogenesis.
Eui Yeun YI ; Shi Young PARK ; Hyun Seok SONG ; Myung Jin SON ; Kyu Yang YI ; Sung En YOO ; Yung Jin KIM
Experimental & Molecular Medicine 2006;38(5):502-508
Angiogenesis is considered to be an integral process to the growth and spread of solid tumors. Anti-angiogenesis therapy recently has been found to be one of the most promising anti-cancer therapeutic strategies. In this study, we provide several lines of evidences showing that KR-31831, a new benzopyran derivative, has anti-angiogenic activities. KR-31831 inhibited the proliferation, migration, invasion and tube formation of bovine aortic endothelial cells (BAECs), and suppressed the release of matrix metalloproteinase-2 (MMP-2) of BAECs. KR-31831 also inhibited in vivo angiogenesis in mouse Matrigel plug assay. Furthermore, the mRNA expressions of basic fibroblast growth factor (bFGF), fibroblast growth factor receptor-2 (FGFR-2), and vascular endothelial growth factor receptor-2 (VEGFR-2) were decreased by KR-31831. Taken together, these results suggest that KR-31831 acts as a novel angiogenesis inhibitor and might be useful for treating hypervascularized cancers.
Vascular Endothelial Growth Factor Receptor-2/metabolism
;
Receptor, Fibroblast Growth Factor, Type 2/metabolism
;
Neovascularization, Physiologic/drug effects
;
Neovascularization, Pathologic/*drug therapy
;
Models, Biological
;
Mice, Inbred C57BL
;
Mice
;
Matrix Metalloproteinase 2/metabolism
;
Male
;
Ischemia/drug therapy
;
Imidazoles/*pharmacology/therapeutic use
;
Fibroblast Growth Factor 2/metabolism
;
Endothelial Cells/drug effects
;
Cells, Cultured
;
Cell Movement/drug effects
;
Cattle
;
Benzopyrans/*pharmacology/therapeutic use
;
Animals
;
Angiogenesis Inhibitors/*pharmacology/therapeutic use