1.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
2.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
3.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
4.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
5.Construction of a key technical indicator system for in-hospital treatment and nursing of patients with nuclear radiation injury
Liu LIU ; Bei HOU ; Yanan ZHU ; Lei ZHU ; Yan GAO ; Yingfeng LIANG ; Shanshan GUO
Chinese Journal of Radiological Health 2025;34(4):595-601
Objective To construct a key technical indicator system for in-hospital treatment and nursing of patients with nuclear radiation injury, and provide a basis for the implementation of such treatment and nursing. Methods The draft of the key technical indicator system for in-hospital treatment and nursing of patients with nuclear radiation injury was determined by literature review, case study, and field investigation. The indicators of the system were determined through two rounds of Delphi consultation and using the precedence chart method. According to the criteria of indicator evaluation, the reliability of expert opinions, and the opinions of the research group, the indicators were refined and evaluated. Results Twenty experts were included for two rounds of consultation via mailed inquiries, with a 100% effective response rate in both rounds. The expert authority coefficients were both 0.945, and the Kendall’s W values were 0.347 and 0.448, respectively (P < 0.05). Following the expert consultations, 1 indicator was deleted, 12 indicators were added, and 6 indicators were modified. The key technical indicator system for in-hospital treatment and nursing of patients with nuclear radiation injury established in this study included 4 first-level indicators, 17 second-level indicators, and 73 third-level indicators. The means of importance assignment for all indicators were > 4.00, and the coefficients of variation were < 0.25. Conclusion The key technical indicator system for in-hospital treatment and nursing of patients with nuclear radiation injury established in this study is scientifically rigorous and practically grounded. The indicators demonstrate strong professional relevance and provide important guidance for in-hospital treatment and nursing of patients with nuclear radiation injury.
6.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
7.Histaminergic Innervation of the Ventral Anterior Thalamic Nucleus Alleviates Motor Deficits in a 6-OHDA-Induced Rat Model of Parkinson's Disease.
Han-Ting XU ; Xiao-Ya XI ; Shuang ZHOU ; Yun-Yong XIE ; Zhi-San CUI ; Bei-Bei ZHANG ; Shu-Tao XIE ; Hong-Zhao LI ; Qi-Peng ZHANG ; Yang PAN ; Xiao-Yang ZHANG ; Jing-Ning ZHU
Neuroscience Bulletin 2025;41(4):551-568
The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown. Here, we assessed the contribution of histamine to VA neuronal activity and PD motor deficits. Functional magnetic resonance imaging showed reduced VA activity in PD patients. Optogenetic activation of VA neurons or histaminergic afferents significantly alleviated motor deficits in 6-OHDA-induced PD rats. Furthermore, histamine excited VA neurons via H1 and H2 receptors and their coupled hyperpolarization-activated cyclic nucleotide-gated channels, inward-rectifier K+ channels, or Ca2+-activated K+ channels. These results demonstrate that histaminergic afferents actively compensate for Parkinsonian motor deficits by biasing VA activity. These findings suggest that targeting VA histamine receptors and downstream ion channels may be a potential therapeutic strategy for PD motor dysfunction.
Animals
;
Histamine/metabolism*
;
Male
;
Oxidopamine/toxicity*
;
Rats
;
Ventral Thalamic Nuclei/physiopathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Parkinson Disease/metabolism*
;
Neurons/physiology*
;
Humans
;
Optogenetics
8.Supramolecular prodrug inspiried by the Rhizoma Coptidis - Fructus Mume herbal pair alleviated inflammatory diseases by inhibiting pyroptosis.
Wenhui QIAN ; Bei ZHANG ; Ming GAO ; Yuting WANG ; Jiachen SHEN ; Dongbing LIANG ; Chao WANG ; Wei WEI ; Xing PAN ; Qiuying YAN ; Dongdong SUN ; Dong ZHU ; Haibo CHENG
Journal of Pharmaceutical Analysis 2025;15(2):101056-101056
Sustained inflammatory responses are closely related to various severe diseases, and inhibiting the excessive activation of inflammasomes and pyroptosis has significant implications for clinical treatment. Natural products have garnered considerable concern for the treatment of inflammation. Huanglian-Wumei decoction (HLWMD) is a classic prescription used for treating inflammatory diseases, but the necessity of their combination and the exact underlying anti-inflammatory mechanism have not yet been elucidated. Inspired by the supramolecular self-assembly strategy and natural drug compatibility theory, we successfully obtained berberine (BBR)-chlorogenic acid (CGA) supramolecular (BCS), which is an herbal pair from HLWMD. Using a series of characterization methods, we confirmed the self-assembly mechanism of BCS. BBR and CGA were self-assembled and stacked into amphiphilic spherical supramolecules in a 2:1 molar ratio, driven by electrostatic interactions, hydrophobic interactions, and π-π stacking; the hydrophilic fragments of CGA were outside, and the hydrophobic fragments of BBR were inside. This stacking pattern significantly improved the anti-inflammatory performance of BCS compared with that of single free molecules. Compared with free molecules, BCS significantly attenuated the release of multiple inflammatory mediators and lipopolysaccharide (LPS)-induced pyroptosis. Its anti-inflammatory mechanism is closely related to the inhibition of intracellular nuclear factor-kappaB (NF-κB) p65 phosphorylation and the noncanonical pyroptosis signalling pathway mediated by caspase-11.
9.The intervention effect of Dahuang Tangluo Pills on diabetic kidney disease based on NLRP3/caspase-1/GSDMD pathway mediated pyroptosis
Chun-Xia XUE ; Yuan-Yuan ZHANG ; Xia YANG ; Pu ZHANG ; Bei-Bei SU ; Xiang-Dong ZHU ; Jian-Qing LIANG
Chinese Pharmacological Bulletin 2024;40(8):1552-1558
Aim To investigate the effect of Dahuang Tangluo pills(DHTL)on NOD-like receptor protein 3(NLRP3)/cysteine aspartate proteolytic enzyme-1(caspase-1)/apodermic D(GSDMD)pathway-media-ted pyroptosis in db/db mice with diabetic kidney dis-ease(DKD)and the underlying mechanism.Methods Eight db/m mice were selected as control group,and forty db/db mice were randomly divided into mod-el group,low dose group,medium dose group,high dose group and dapagliflozin group,with eight mice in each group.The control group and model group were given equal volume normal saline intragastric adminis-tration,the low,medium and high dose groups were given DHTL solution of 0.9,1.8 and 3.6 mg·kg-1,respectively,and the dapagliflozin group was given dapagliflozin tablet solution of 1.5 mg·kg-1,and the six groups were given intragastric administration once a day for 10 weeks.The body weight of mice was meas-ured daily and the dose was adjusted during adminis-tration.Fasting blood glucose(FBG)and body weight were measured after administration.The levels of 24-hour urinary total protein(24h-UTP),blood creatinine(Scr)and urea nitrogen(BUN)were measured by au-tomatic biochemical analyzer.The levels of interleukin-1 β(IL-1β),interleukin-6(IL-6),interleukin-18(IL-18)and tumor necrosis factor-α(TNF-α)in re-nal tissue of mice were determined by enzyme-linked immunosorbent assay(ELISA).The pathological changes of renal tissue were observed by hematoxylin-eosin(HE)staining.The DNA damage in mouse kid-ney tissue was observed using in situ end labeling(TUNEL)staining.The mRNA and protein expres-sions of NLRP3,caspase-1 and GSDMD in mouse kid-ney tissues were detected by Real-time quantitative PCR and Western blot.Results Compared with the control group,FBG,body weight,IL-1β,IL-6,IL-18 and TNF-α in the model group significantly increased(P<0.01).The mRNA and protein expressions of NLRP3,caspase-1 and GSDMD in mouse kidney tis-sues significantly increased(P<0.01).Compared with the model group,the levels of FBG,body weight,IL-1β,IL-6,IL-18 and TNF-α in each administration group significantly decreased(P<0.05).The patho-logical morphology of renal tissue was improved in dif-ferent degrees,and the number of positive cells in re-nal tissue was significantly reduced(P<0.05).The mRNA and protein expressions of NLRP3,caspase-1 and GSDMD in renal tissue of mice in high and medi-um dose of DHTL and dapagliflozin group significantly decreased(P<0.05).Conclusions DHTL can im-prove the renal injury of DKD,and its mechanism may be through the regulation of NLRP3/caspase-1/GSD-MD pathway to inhibit pyroptosis and relieve the in-flammatory response of DKD mice.
10.The application of ultrasound evaluation of atelectasis in general anesthesia
Liming DAI ; Xiangwei LING ; Wei LI ; Ji ZHU ; Bei PAN ; Fumei TIAN
Journal of Chinese Physician 2024;26(4):564-567
Objective:To explore the application effect of ultrasound evaluation of atelectasis in general anesthesia.Methods:Eighty patients who underwent general anesthesia surgery at the Second Affiliated Hospital of Wannan Medical College from January 2019 to December 2020 were selected as the study subjects. The gold standard was chest CT diagnosis of perioperative atelectasis, and they were divided into atelectasis group (39 cases) and control group (41 cases). Twelve regional images, including left upper anterior chest, left lower anterior chest, right upper anterior chest, right lower anterior chest, left upper chest, left lower chest, right upper chest, right upper chest, right lower chest, right upper chest, right lower chest, right upper chest, right lower chest, right lower chest, right lower chest, left upper chest, right lower chest, left upper chest, right lower chest, left upper posterior region, left lower chest, left lower posterior region, left lower posterior region, right upper posterior region, and right lower posterior region, were collected by pulmonary ultrasound (LUS) at time points T 1 after entering the room, 30 minutes after tracheal intubation (T 2), 30 minutes after extubation (T 3), 24 hours after surgery (T 4), and 48 hours after surgery (T 5), And an improved semi quantitative scoring method for evaluating lung ventilation was used to compare the LUS scores of the two groups at 5 time points. Results:There was no statistically significant difference in LUS scores between the two groups of patients in different lung zones at T 1 (all P>0.05); There are varying degrees of differences in LUS scores for the same lung partition at different times (all P<0.05). There was no statistically significant difference in LUS scores between T 2 and T 5 for left upper anterior chest, left lower anterior chest, right upper anterior chest, left upper chest, right upper chest, left upper posterior region, and right upper posterior region (all P>0.05); The LUS scores of the T 2-T 5 atelectasis group in the lower left chest, lower right chest, lower left posterior area, and lower right posterior area were higher than those of the control group (all P<0.05). Conclusions:LUS can be used to evaluate atelectasis during general anesthesia and has broad clinical application and promotion value.

Result Analysis
Print
Save
E-mail