1.Kinesin Spindle Protein Inhibition in Translational Research.
Bayalagmaa NYAMAA ; Hyoung Kyu KIM ; Yu Jeong JEONG ; In Sung SONG ; Jin HAN
Journal of Lipid and Atherosclerosis 2014;3(2):63-78
The kinesin superfamily is a class of motor proteins moving along microtubule filaments and playing essential roles in mitosis of eukaryotic cells. In the cancer biology, mitotic activity is an essential factor for development and metastasis of various cancers. Therefore, the inhibition of kinesin activity is suggested as an alternative cancer therapy. Accumulated clinical evidences have proved the potency of kinesin inhibitors in cancer treatments. In this review, we provided an overview of kinesins that play a critical role in the pathophysiology of various cancers and described the beneficial vs. side effects of their inhibitors that have been tested in both basic science and clinical studies.
Biology
;
Eukaryotic Cells
;
Kinesin*
;
Microtubules
;
Mitosis
;
Neoplasm Metastasis
;
Translational Medical Research*
2.NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1alpha expression levels during hypoxia/reoxygenation injury.
Vu Thi THU ; Hyoung Kyu KIM ; Le Thanh LONG ; Bayalagmaa NYAMAA ; In Sung SONG ; To Thanh THUY ; Nguyen Quang HUY ; Jubert MARQUEZ ; Soon Ha KIM ; Nari KIM ; Kyung Soo KO ; Byoung Doo RHEE ; Jin HAN
The Korean Journal of Physiology and Pharmacology 2016;20(2):201-211
Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment (10 microM) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1alpha) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving PGC1alpha during cardiac HR injuries.
Animals
;
Anoxia
;
Blotting, Western
;
Citric Acid
;
Electron Transport
;
Heart
;
Mitochondria
;
Oxidative Phosphorylation*
;
Peroxisomes
;
Rats
;
Real-Time Polymerase Chain Reaction
;
Spectrum Analysis