1.Dimerization of retroviral RNA genomes.
Xu GAO ; Rong-Xian SHEN ; Wen-Hua XIANG ; Jian-Hua ZHOU
Chinese Journal of Virology 2008;24(6):487-491
Base Pairing
;
Dimerization
;
Genome, Viral
;
RNA, Viral
;
chemistry
;
genetics
;
Retroviridae
;
chemistry
;
genetics
2.Predicting RNA secondary structures including pseudoknots by covariance with stacking and minimum free energy.
Jinwei YANG ; Zhigang LUO ; Xiaoyong FANG ; Jinhua WANG ; Kecheng TANG
Chinese Journal of Biotechnology 2008;24(4):659-664
Prediction of RNA secondary structures including pseudoknots is a difficult topic in RNA field. Current predicting methods usually have relatively low accuracy and high complexity. Considering that the stacking of adjacent base pairs is a common feature of RNA secondary structure, here we present a method for predicting pseudoknots based on covariance with stacking and minimum free energy. A new score scheme, which combined stacked covariance with free energy, was used to assess the evaluation of base pair in our method. Based on this score scheme, we utilized an iterative procedure to compute the optimized RNA secondary structure with minimum score approximately. In each interaction, helix of high covariance and low free energy was selected until the sequences didn't form helix, so two crossing helixes which were selected from different iterations could form a pseudoknot. We test our method on data sets of ClustalW alignments and structural alignments downloaded from RNA databases. Experimental results show that our method can correctly predict the major portion of pseudoknots. Our method has both higher average sensitivity and specificity than the reference algorithms, and performs much better for structural alignments than for ClustalW alignments. Finally, we discuss the influence on the performance by the factor of covariance weight, and conclude that the best performance is achieved when lambda1 : lambda2 = 5 : 1.
Algorithms
;
Base Pairing
;
Base Sequence
;
Computational Biology
;
methods
;
Molecular Sequence Data
;
Nucleic Acid Conformation
;
RNA
;
chemistry
;
genetics
;
Sequence Analysis, RNA
3.Para-Bombay phenotype caused by combined heterozygote of two bases deletion on fut1 alleles.
Kan-Rong MA ; Shu-Dan TAO ; Xiao-Fei LAN ; Xiao-Zhen HONG ; Xian-Guo XU ; Fa-Ming ZHU ; Hang-Jun LÜ ; Li-Xing YAN
Journal of Experimental Hematology 2011;19(1):223-226
This study was purposed to investigate the molecular basis of a para-Bombay phenotype for screening and identification of rare blood group. ABO and H phenotypes of the proband were identified by serological techniques. The exon 6 to exon 7 of ABO gene and full coding region of α-1,2-fucosyltransferase (fut1) gene of the proband were analyzed by polymerase chain reaction and direct sequencing of the amplified fragments. The haplotype of compound heterozygote of fut1 was also identified by cloning sequencing. The results indicated that a rare para-Bombay phenotype was confirmed by serological techniques. Two deletion or insertion variant sites near nucleotide 547 and 880 were detected in fut1 gene. The results of cloning sequence showed that one haplotype of fut1 gene was two bases deletion at 547-552 (AGAGAG→AGAG), and another one was two bases deletion at position 880-882 (TTT→T). Both two variants caused a reading frame shift and a premature stop codon. It is concluded that a rare para-Bombay phenotype is found and confirmed in blood donor population. The molecular basis of this individual is compound heterozygote of two bases deletion on fut1 gene which weaken the activity of α-1, 2-fucosyltransferase.
ABO Blood-Group System
;
genetics
;
Alleles
;
Base Pairing
;
Female
;
Fucosyltransferases
;
genetics
;
Genotype
;
Heterozygote
;
Humans
;
Mutation
;
Phenotype
;
Sequence Deletion
4.Isolation and characterization of 2'-amino-modified RNA aptamers for human TNFalpha.
Xinrui YAN ; Xuwen GAO ; Zhiqing ZHANG
Genomics, Proteomics & Bioinformatics 2004;2(1):32-42
Human tumor necrosis factor alpha (hTNFalpha), a pleiotropic cytokine with activities ranging from host defense mechanisms in infection and injury to severe toxicity in septic shock or other related diseases, is a promising target for drug screening. Using the SELEX (systematic evolution of ligands by exponential enrichment) process, we isolated oligonucleotide ligands (aptamers) with high affinities for hTNFalpha. Aptamers were selected from a starting pool of 40 randomized sequences composed of about 10(15) RNA molecules. Representative aptamers were truncated to the minimal length with high affinity for hTNFalpha and were further modified by replacement of 2'-OH with 2'-F and 2'-NH2 at all ribopurine positions. These modified RNA aptamers were resistant to nuclease. The specificity of these aptamers for hTNFalpha was confirmed, and their activity to inhibit the cytotoxicity of hTNFalpha on mouse L929 cells was determined. Results demonstrated that four 2'-NH2-modified aptamers bound to hTNFalpha with high affinity and blocked the binding of hTNFalpha to its receptor, thus protecting the L929 cells from the cytotoxicity of hTNFalpha. Oligonucleotide aptamers described here are potential therapeutics and diagnostics for hTNFalpha-related diseases.
Animals
;
Base Pairing
;
Base Sequence
;
Binding Sites
;
Cells, Cultured
;
Humans
;
Ligands
;
Mice
;
Oligonucleotides
;
genetics
;
pharmacology
;
RNA
;
genetics
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
antagonists & inhibitors
;
genetics
5.Structure of precursor microRNA's terminal loop regulates human Dicer's dicing activity by switching DExH/D domain.
Zhongmin LIU ; Jia WANG ; Gang LI ; Hong-Wei WANG
Protein & Cell 2015;6(3):185-193
Almost all pre-miRNAs in eukaryotic cytoplasm are recognized and processed into double-stranded microRNAs by the endonuclease Dicer protein comprising of multiple domains. As a key player in the small RNA induced gene silencing pathway, the major domains of Dicer are conserved among different species with the exception of the N-terminal components. Human Dicer's N-terminal domain has been shown to play an auto-inhibitory function of the protein's dicing activity. Such an auto-inhibition can be released when the human Dicer protein dimerizes with its partner protein, such as TRBP, PACT through the N-terminal DExH/D (ATPase-helicase) domain. The typical feature of a pre-miRNA contains a terminal loop and a stem duplex, which bind to human Dicer's DExH/D (ATPase-helicase) domain and PAZ domain respectively during the dicing reaction. Here, we show that pre-miRNA's terminal loop can regulate human Dicer's enzymatic activity by interacting with the DExH/D (ATPase-helicase) domain. We found that various editing products of pre-miR-151 by the ADAR1P110 protein, an A-to-I editing enzyme that modifies pre-miRNAs sequence, have different terminal loop structures and different activity regulatory effects on human Dicer. Single particle electron microscopy reconstruction revealed that pre-miRNAs with different terminal loop structures induce human Dicer's DExH/D (ATPase-helicase) domain into different conformational states, in correlation with their activity regulatory effects.
Base Pairing
;
Base Sequence
;
DEAD-box RNA Helicases
;
chemistry
;
genetics
;
Humans
;
MicroRNAs
;
chemistry
;
genetics
;
Molecular Conformation
;
Molecular Sequence Data
;
Protein Structure, Tertiary
;
RNA Editing
;
genetics
;
Ribonuclease III
;
chemistry
;
genetics
6.Mitochondrial DNA 4977bp Deletion Mutation in Peripheral Blood Reflects Atrial Remodeling in Patients with Non-Valvular Atrial Fibrillation.
Jihei Sara LEE ; Young Guk KO ; Kyoung Jin SHIN ; Sook Kyoung KIM ; Jae Hyung PARK ; Ki Cheol HWANG ; Hui Nam PAK
Yonsei Medical Journal 2015;56(1):53-61
PURPOSE: Recently, mitochondrial DNA 4977bp deletion (mtDNA4977-mut), a somatic mutation related to oxidative stress, has been shown to be associated with atrial fibrillation (AF). We hypothesized that patient age, as well as electroanatomical characteristics of fibrillating left atrial (LA), vary depending on the presence of mtDNA4977-mut in peripheral blood among patients with non-valvular AF. MATERIALS AND METHODS: Analyzing clinical and electroanatomical characteristics, we investigated the presence of the mtDNA4977-mut in peripheral blood of 212 patients (51.1+/-13.2 years old, 83.5% male) undergoing catheter ablation for non-valvular AF, as well as 212 age-matched control subjects. RESULTS: The overall frequency of peripheral blood mtDNA4977-mut in patients with AF and controls was not significantly different (24.5% vs. 19.3%, p=0.197). When the AF patient group was stratified according to age, mtDNA4977-mut was more common (47.4% vs. 20.0%, p=0.019) in AF patients older than 65 years than their age-matched controls. Among AF patients, those with mtDNA4977-mut were older (58.1+/-11.9 years old vs. 48.8+/-11.9 years old, p<0.001). AF patients positive for the mtDNA mutation had greater LA dimension (p=0.014), higher mitral inflow peak velocity (E)/diastolic mitral annular velocity (Em) ratio (p<0.001), as well as lower endocardial voltage (p=0.035), and slower conduction velocity (p=0.048) in the posterior LA than those without the mutation. In multivariate analysis, E/Em ratio was found to be significantly associated with the presence of mtDNA4977-mut in peripheral blood. CONCLUSION: mtDNA4977-mut, an age-related somatic mutation detected in the peripheral blood, is associated with advanced age and electro-anatomical remodeling of the atrium in non-valvular AF.
Adult
;
Aged
;
Atrial Fibrillation/blood/*genetics/*physiopathology
;
Atrial Remodeling/*genetics
;
Base Pairing/*genetics
;
Case-Control Studies
;
DNA, Mitochondrial/*blood/*genetics
;
Female
;
Heart Atria/pathology/physiopathology
;
Humans
;
Kaplan-Meier Estimate
;
Logistic Models
;
Male
;
Middle Aged
;
Mutation Rate
;
Phenotype
;
Sequence Deletion/*genetics
7.Advances in the chemical and biological studies of polyamides.
Shao-Long ZHU ; Ping-Hui GAO ; Peng LI ; Yuan-Ying JIANG ; Da-Zhi ZHANG
Acta Pharmaceutica Sinica 2008;43(11):1089-1093
Polyamides, containing N-methylpyrrole (Py) and N-methyl-imidazole (Im) amino acids, are synthetic oligomers programmed to read the DNA double helix in the minor groove with high affinities and sequence specificities resulting in modulation of gene expression. They are cell permeable, stable and have no cytotoxicity, which provide a promising tool of gene regulation. We describe here recent advances in the field of DNA binding polyamides, including pairing rules, specifities and affinities to DNA, synthesis methods, cellular and nuclear uptake properties, gene regulation and effectiveness in vivo. The potential problems and difficulties in future research are also discussed.
Animals
;
Base Pairing
;
DNA
;
chemistry
;
genetics
;
DNA Footprinting
;
Gene Expression Regulation
;
drug effects
;
Imidazoles
;
chemical synthesis
;
chemistry
;
metabolism
;
pharmacology
;
Nylons
;
chemical synthesis
;
chemistry
;
metabolism
;
pharmacology
;
Pyrroles
;
chemical synthesis
;
chemistry
;
metabolism
;
pharmacology