1.Progress of research on the role of CLCNKB gene in classical Bartter syndrome.
Jiaran ZHOU ; Chunli WANG ; Huaying BAO
Chinese Journal of Medical Genetics 2020;37(5):573-577
Bartter syndrome is an inherited metabolic disorder characterized by hypokalemic alkalosis and high rennin-angiotensin-aldosteronism which can occur at all ages but mainly in childhood. Classical Bartter syndrome is caused by loss-of-function variants in the gene encoding basolateral chloride channel ClC-Kb (CLCNKB), which is a common type of Bartter syndrome characterized with diverse clinical manifestations ranging from severe to very mild. This article reviews the function and mechanism of CLCNKB variants in Chinese population and the genotype-phenotype correlation of CLCNKB variants in classical Bartter syndrome.
Asian Continental Ancestry Group
;
Bartter Syndrome
;
genetics
;
pathology
;
Chloride Channels
;
genetics
;
Genetic Association Studies
;
Humans
;
Research
;
trends
2.Mutations in SLC12A3 and CLCNKB and Their Correlation with Clinical Phenotype in Patients with Gitelman and Gitelman-like Syndrome.
Jae Wook LEE ; Jeonghwan LEE ; Nam Ju HEO ; Hae Il CHEONG ; Jin Suk HAN
Journal of Korean Medical Science 2016;31(1):47-54
Gitelman's syndrome (GS) is caused by loss-of-function mutations in SLC12A3 and characterized by hypokalemic metabolic alkalosis, hypocalciuria, and hypomagnesemia. Long-term prognosis and the role of gene diagnosis in GS are still unclear. To investigate genotype-phenotype correlation in GS and Gitelman-like syndrome, we enrolled 34 patients who showed hypokalemic metabolic alkalosis without secondary causes. Mutation analysis of SLC12A3 and CLCNKB was performed. Thirty-one patients had mutations in SLC12A3, 5 patients in CLCNKB, and 2 patients in both genes. There was no significant difference between male and female in clinical manifestations at the time of presentation, except for early onset of symptoms in males and more profound hypokalemia in females. We identified 10 novel mutations in SLC12A3 and 4 in CLCNKB. Compared with those with CLCNKB mutations, patients with SLC12A3 mutations were characterized by more consistent hypocalciuria and hypomagnesemia. Patients with 2 mutant SLC12A3 alleles, compared with those with 1 mutant allele, did not have more severe clinical and laboratory findings except for lower plasma magnesium concentrations. Male and female patients did not differ in their requirement for electrolyte replacements. Two patients with concomitant SLC12A3 and CLCNKB mutations had early-onset severe symptoms and showed different response to treatment. Hypocalciuria and hypomagnesemia are useful markers in differentiation of GS and classical Bartter's syndrome. Gender, genotypes or the number of SLC12A3 mutant alleles cannot predict the severity of disease or response to treatment.
Adolescent
;
Adult
;
Alleles
;
Bartter Syndrome/genetics/pathology
;
Chloride Channels/*genetics
;
DNA Mutational Analysis
;
Female
;
Genetic Association Studies
;
Genotype
;
Gitelman Syndrome/*genetics/pathology
;
Humans
;
Hypokalemia/etiology
;
Male
;
Middle Aged
;
Phenotype
;
Polymorphism, Genetic
;
Solute Carrier Family 12, Member 3/genetics
;
Young Adult
3.Translational Read-Through of a Nonsense Mutation Causing Bartter Syndrome.
Hee Yeon CHO ; Beom Hee LEE ; Hae Il CHEONG
Journal of Korean Medical Science 2013;28(6):821-826
Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.
Animals
;
Bartter Syndrome/genetics/*pathology
;
Chloride Channels/analysis/genetics/*metabolism
;
Cloning, Molecular
;
Codon, Nonsense
;
Dogs
;
Humans
;
Immunohistochemistry
;
Madin Darby Canine Kidney Cells
;
Microscopy, Confocal
;
Mutagenesis, Site-Directed
;
Recombinant Fusion Proteins/analysis/biosynthesis/genetics
;
Transfection