1.Caenorhabditis elegans mom-4 is required for the activation of the p38 MAPK signaling pathway in the response to Pseudomonas aeruginosa infection.
Ajing XU ; Guojun SHI ; Feng LIU ; Baoxue GE
Protein & Cell 2013;4(1):53-61
The p38 mitogen-activated protein kinase (MAPK) plays an evolutionarily conserved role in the cellular response to microbial infection and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. In the Caenorhabditis elegans, the p38 MAPK (also called PMK-1) signaling pathway has been shown to be required in its resistance to bacterial infection. However, how different upstream MAP2Ks and MAP3Ks specifically contribute to the activation of PMK-1 in response to bacterial infection still is not clearly understood. By using double-stranded RNA-mediated interference (RNAi) and genetic mutants of C. elegans, we demonstrate that C. elegans MOM-4, a mammalian TAK1 homolog, is required for the resistance of C. elegans to a P. aeruginosa infection. We have also found that the MKK-4 of C. elegans is required for P. aeruginosa resistance, but not through the regulation of DLK-1. In summary, our results indicate that different upstream MAPKKKs or MAPKKs regulate the activation of PMK-1 in response to P. Aeruginosa.
Animals
;
Caenorhabditis elegans
;
enzymology
;
genetics
;
immunology
;
microbiology
;
Caenorhabditis elegans Proteins
;
genetics
;
metabolism
;
Disease Resistance
;
Enzyme Activation
;
MAP Kinase Kinase 1
;
metabolism
;
MAP Kinase Signaling System
;
Membrane Proteins
;
deficiency
;
genetics
;
metabolism
;
Mutation
;
Pseudomonas Infections
;
enzymology
;
Pseudomonas aeruginosa
;
physiology
;
RNA Interference
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
2.Discovery of novel diarylamides as orally active diuretics targeting urea transporters.
Shun ZHANG ; Yan ZHAO ; Shuyuan WANG ; Min LI ; Yue XU ; Jianhua RAN ; Xiaoqiang GENG ; Jinzhao HE ; Jia MENG ; Guangying SHAO ; Hong ZHOU ; Zemei GE ; Guangping CHEN ; Runtao LI ; Baoxue YANG
Acta Pharmaceutica Sinica B 2021;11(1):181-202
Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate,