1.Silencing of UBP43 by shRNA Enhances the Antiviral Activity of Interferon against Hepatitis B Virus
Hebin FAN ; Baoju WANG ; Yinping LU ; Youhua HAO ; Xinxing YANG ; Mengji LU ; Dongliang YANG
Virologica Sinica 2008;23(5):339-344
Previous studies have shown that expression of the interferon-sensitive gene (ISG)I5 protease UBP43 is increased in the liver biopsy specimens of patients who do not respond to interferon (IFN)-α therapy. We hypothesized that UBP43 might hinder the ability of IFN to inhibit HBV replication. In this study, we investigated whether vector-based siRNA promoted by Hi (psiUBP43) could enhance IFN inhibiting HBV replication in cell culture. UBP43 was specifically silenced using shRNA. In HepG2.2.15 cells, the HBeAg and HBV DNA levels were significantly reduced by IFN after transfection of shRNA, imphicated that vector-based siRNA promoted by HI (psiUBP43) could enhance IFN inhibiting HBV replication in cell culture. These data suggest that UBP43 modulates the anti-HBV type I IFN response, and is a possible therapeutic target for the treatment of HBV infection.
2.Technological process of cell disruption for extracting astaxanthin from Phaffia rhodozyma by acid method under autoclave conditions.
Baoju LU ; Anfeng XIAO ; Lijun LIL ; Hui NI ; Huinong CAI ; Wenjin SU
Chinese Journal of Biotechnology 2008;24(7):1285-1292
Phaffia rhodozyma is one of the organisms for production of astaxanthin, and the key process for extracting intracellular astaxanthin is cell disruption. In this work, cell disruption for extracting astaxanthin from Phaffia rhodozyma was studied with autoclave method at low acid concentration. The optimum disrupting conditions were: autoclave pressure 0.1 MPa, 121 degrees C; hydrochloric acid concentration 0.5 mol/L; liquid to material ratio (V/W) 30 mL/g dry cell weight and disruption time 2 min. Under the optimum conditions, medium scale experiment showed that astaxanthin and total carotenoids recovery from Phaffia rhodozyma were (84.8 +/- 3.2)% and (93.3 +/- 2)%, respectively. This new method can lead to no poisonous residues and get high extraction yield, which have good prospects to be put into industrial production.
Basidiomycota
;
chemistry
;
Carotenoids
;
isolation & purification
;
Cell Wall
;
metabolism
;
Hot Temperature
;
Hydrochloric Acid
;
Xanthophylls
;
isolation & purification
3.Establishment of a functional cell line expressing both subunits of H1a and H2c of human hepatocyte surface molecule ASGPR.
Bin, HU ; Yan, YANG ; Jia, LIU ; Zhiyong, MA ; Hongping, HUANG ; Shenpei, LIU ; Yuan, YU ; Youhua, HAO ; Baoju, WANG ; Mengji, LU ; Dongliang, YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2010;30(5):556-61
To better understand the effect of a new split variant of human asialoglycoprotein receptor (ASGPR H1b) on ASGPR ligands' binding ability, we established a functional cell line which expresses ASGPR. The full lengths of ASGPRH1a and H2c fragments from human liver were amplified by reverse transcript PCR (RT-PCR) and inserted into eukaryotic expression vector pIRES2EGFP, pCDNA3.1 (Zeo+) respectively. The recombinants were co-transfected into HeLa cells. After selection by using Neocin and Zeocin, a stably transfected cell line was established, which was designated 4-1-6. The transcription and expression of ASGPRH1a and H2c in 4-1-6 were confirmed by RT-PCR, Western blotting and immunofluorescence. The endocytosis function of the artificial "ASGPR" on the surface of 4-1-6 was tested by FACS. It was found that the cell line 4-1-6 could bind ASGPR natural ligand molecular asialo-orosomucoid (ASOR). After the eukaryotic plasmid H1b/pCDNA3.1 (neo) was transfected into cell line 4-1-6, H1b did not down-regulate the ligand binding ability of ASGPR. The eukaryotic expression plasmid H1b/pcDNA3.1 (neo) and H2c/pcDNA3.1 (neo) were co-transfected transiently into Hela cell. Neither single H1b nor H1b and H2c could bind ASOR. In conclusion, a functional cell line of human asialoglycoprotein receptor (ASGPR) which expresses both H1a and H2c stably was established. The new split variant H1b has no effect on ASGPR binding to ASOR. ASGPRH1b alone can't bind to ASOR, it yet can't form functional complex with ASGPRH2c.
4.Cloning, Expression and Polyclonal Antibody Preparation of the Asialoglycoprotein Receptor of Marmota Himalayan
Yan YANG ; Huang HUANG ; Zhenghua ZHANG ; Baoju WANG ; Yongjun TIAN ; Mengji LU ; Dongliang YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(4):411-414
The objective of this study is to express the carbohydrate recognition domain (CRD) of the asialoglycoprotein receptor (ASGPR) H1 and H2 subunits of Marmota himalayan in vitro, and develop polyclonal antibodies against the recombinant proteins. RT-PCR was used to amplify ASGPR CRDH1 and CRDH2 from the liver tissue of Marmota himalayan. The products of amplification were subcloned into prokaryotic expression vector pRSET-B, and expressed in E. coli BL21(DE3)plysS. The recombinant proteins were purified using Ni-NTA spin column. The purified proteins were inoculated into BALB/c mice to develop polyclonal antibodies. The sensitivity and specificity of antibodies were evaluated by enzyme-linked immunosorbent assay (ELISA), Western blotting and immunohistochemical staining (IHC). The polyclonal antibodies showed high sensitivity and specificity against both denaturated and native ASGPR proteins. We successfully amplified and expressed the ASGPR CRDs of Marmota himalayan. The nucleic sequences of ASGPR CRDH1 and CRDH2 of Marmota himalayan have been submitted to Genbank and the sequence ID are DQ 845465 and DQ845466, respectively. The proteins and antibodies prepared can be used for targeting gene therapy in a new animal model-Marmota himalayan-for the research of infectious diseases of hepatitis viruses and liver cancer treatment.
5.Establishment of a Functional Cell Line Expressing both Subunits of H1a and H2c of Human Hepatocyte Surface Molecule ASGPR
HU BIN ; YANG YAN ; LIU JIA ; MA ZHIYONG ; HUANG HONGPING ; LIU SHENPEI ; YU YUAN ; HAO YOUHUA ; WANG BAOJU ; LU MENGJI ; YANG DONGLIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2010;30(5):556-561
To better understand the effect of a new split variant of human asialoglycoprotein receptor (ASGPR Hlb) on ASGPR ligands' binding ability, we established a functional cell line which expresses ASGPR. The full lengths of ASGPRH 1 a and H2c fragments from human liver were amplified by reverse transcript PCR (RT-PCR) and inserted into eukaryotic expression vector plRES2EGFP,pCDNA3.1 (Zeo+) respectively. The recombinants were co-transfected into HeLa cells. After selection by using Neocin and Zeocin, a stably transfected cell line was established, which was designated 4-1-6. The transcription and expression of ASGPRHla and H2c in 4-1-6 were confirmed by RT-PCR,Western blotting and immunofluorescence. The endocytosis function of the artificial "ASGPR" on the surface of 4-1-6 was tested by FACS. It was found that the cell line 4-1-6 could bind ASGPR natural ligand molecular asialo-orosomucoid (ASOR). After the eukaryotic plasmid H lb/pCDNA3.1 (neo)was transfected into cell line 4-1-6, Hlb did not down-regulate the ligand binding ability of ASGPR.The eukaryotic expression plasmid Hlb/pcDNA3.1 (neo) and H2c/pcDNA3.1 (neo) were co-transfected transiently into Hela cell. Neither single Hlb nor Hlb and H2c could bind ASOR. In conclusion, a functional cell line of human asialoglycoprotein receptor (ASGPR) which expresses both Hla and H2c stably was established. The new split variant Hlb has no effect on ASGPR binding to ASOR. ASGPRHlb alone can't bind to ASOR, it yet can't form functional complex with ASGPRH2c.