1.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
2.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
3.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
4.Engineered plant extracellular vesicles: Emerging nanoplatforms for combinational cancer immunotherapy.
Fucai CHEN ; Rongrong BAO ; Wanyi YANG ; Yijing LU ; Jiaxin GUO ; Wenjing CHEN ; Jiale LI ; Kuanhan FENG ; Wen ZHANG ; Liuqing DI ; Liang FENG ; Ruoning WANG
Acta Pharmaceutica Sinica B 2025;15(11):5663-5701
Plant-derived extracellular vesicles (PDEVs), describe a group of nanoparticles released by plants. These particles are characterized by a lipid bilayer structure containing various proteins, lipids, nucleic acids, and unique metabolites. Although the study on PDEVs is relatively new, having only been around for ten years, they have shown promising development prospects in both basic research and clinical transformation areas. Evidence suggests that PDEVs have excellent application prospects in regulating inflammation and treating tumors. Their distinctive, vesicle-mimicking architecture and stellar biocompatibility render them prime candidates for ferrying various anti-cancer agents, including RNA, proteins, and conventional chemotherapy drugs. Increasingly, studies have shown that PDEVs can be engineered as an innovative platform for combination cancer immunotherapy. Consequently, this paper provides an extensive summary of current developments in engineering methods and strategies for PDEVs in cancer treatment and combined cancer immune therapeutics. The essential characteristics of PDEVs, including the biogenesis process and components, as well as their anti-tumor activity and mechanism, are summarized. Finally, the in vivo safety of PDEVs as delivery vectors and the challenges of scale-up production and clinical transformation are discussed.
5.Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia.
Mingya LIU ; Feifei QI ; Jue WANG ; Fengdi LI ; Qi LV ; Ran DENG ; Xujian LIANG ; Shasha ZHOU ; Pin YU ; Yanfeng XU ; Yaqing ZHANG ; Yiwei YAN ; Ming LIU ; Shuyue LI ; Guocui MOU ; Linlin BAO
Protein & Cell 2025;16(2):148-155
6.Glycemic Control and Diabetes Duration in Relation to Subsequent Myocardial Infarction among Patients with Coronary Heart Disease and Type 2 Diabetes.
Fu Rong LI ; Yan DOU ; Chun Bao MO ; Shuang WANG ; Jing ZHENG ; Dong Feng GU ; Feng Chao LIANG
Biomedical and Environmental Sciences 2025;38(1):27-36
OBJECTIVE:
This study aimed to investigate the impact of glycemic control and diabetes duration on subsequent myocardial infarction (MI) in patients with both coronary heart disease (CHD) and type 2 diabetes (T2D).
METHODS:
We conducted a retrospective cohort study of 33,238 patients with both CHD and T2D in Shenzhen, China. Patients were categorized into 6 groups based on baseline fasting plasma glucose (FPG) levels and diabetes duration (from the date of diabetes diagnosis to the baseline date) to examine their combined effects on subsequent MI. Cox proportional hazards regression models were used, with further stratification by age, sex, and comorbidities to assess potential interactions.
RESULTS:
Over a median follow-up of 2.4 years, 2,110 patients experienced MI. Compared to those with optimal glycemic control (FPG < 6.1 mmol/L) and shorter diabetes duration (< 10 years), the fully-adjusted hazard ratio ( HR) (95% Confidence Interval [95% CI]) for those with a diabetes duration of ≥ 10 years and FPG > 8.0 mmol/L was 1.93 (95% CI: 1.59, 2.36). The combined effects of FPG and diabetes duration on MI were largely similar across different age, sex, and comorbidity groups, although the excess risk of MI associated with long-term diabetes appeared to be more pronounced among those with atrial fibrillation.
CONCLUSION
Our study indicates that glycemic control and diabetes duration significant influence the subsequent occurrence of MI in patients with both CHD and T2D. Tailored management strategies emphasizing strict glycemic control may be particularly beneficial for patients with longer diabetes duration and atrial fibrillation.
Humans
;
Diabetes Mellitus, Type 2/blood*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Coronary Disease/complications*
;
Myocardial Infarction/etiology*
;
Retrospective Studies
;
China/epidemiology*
;
Glycemic Control
;
Blood Glucose
;
Adult
;
Risk Factors
;
Time Factors
7.Multidisciplinary expert consensus on weight management for overweight and obese children and adolescents based on healthy lifestyle
HONG Ping, MA Yuguo, TAO Fangbiao, XU Yajun, ZHANG Qian, HU Liang, WEI Gaoxia, YANG Yuexin, QIAN Junwei, HOU Xiao, ZHANG Yimin, SUN Tingting, XI Bo, DONG Xiaosheng, MA Jun, SONG Yi, WANG Haijun, HE Gang, CHEN Runsen, LIU Jingmin, HUANG Zhijian, HU Guopeng, QIAN Jinghua, BAO Ke, LI Xuemei, ZHU Dan, FENG Junpeng, SHA Mo, Chinese Association for Student Nutrition & ; Health Promotion, Key Laboratory of Sports and Physical Fitness of the Ministry of Education,〖JZ〗 Engineering Research Center of Ministry of Education for Key Core Technical Integration System and Equipment,〖JZ〗 Key Laboratory of Exercise Rehabilitation Science of the Ministry of Education
Chinese Journal of School Health 2025;46(12):1673-1680
Abstract
In recent years, the prevalence of overweight and obesity among children and adolescents has risen rapidly, posing a serious threat to their physical and mental health. To provide scientific, systematic, and standardized weight management guidance for overweight and obese children and adolescents, the study focuses on the core concept of healthy lifestyle intervention, integrates multidisciplinary expert opinions and research findings,and proposes a comprehensive multidisciplinary intervention framework covering scientific exercise intervention, precise nutrition and diet, optimized sleep management, and standardized psychological support. It calls for the establishment of a multi agent collaborative management mechanism led by the government, implemented by families, fostered by schools, initiated by individuals, optimized by communities, reinforced by healthcare, and coordinated by multiple stakeholders. Emphasizing a child and adolescent centered approach, the consensus advocates for comprehensive, multi level, and personalized guidance strategies to promote the internalization and maintenance of a healthy lifestyle. It serves as a reference and provides recommendations for the effective prevention and control of overweight and obesity, and enhancing the health level of children and adolescents.
8.Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis
Bao YINI ; Shan QIYUAN ; Lu KEDA ; Yang QIAO ; Liang YING ; Kuang HAODAN ; Wang LU ; Hao MIN ; Peng MENGYUN ; Zhang SHUOSHENG ; Cao GANG
Journal of Pharmaceutical Analysis 2024;14(8):1099-1109
Renal fibrosis is a devastating consequence of progressive chronic kidney disease,representing a major public health challenge worldwide.The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear,and effective treatments are still lacking.Renal tubular epithelial cells(RTECs)maintain kidney function,and their dysfunction has emerged as a critical contributor to renal fibrosis.Cellular quality control comprises several components,including telomere homeostasis,ubiquitin-proteasome system(UPS),autophagy,mitochondrial homeostasis(mitophagy and mitochondrial metabolism),endoplasmic reticulum(ER,unfolded protein response),and lysosomes.Failures in the cellular quality control of RTECs,including DNA,protein,and organelle damage,exert profibrotic functions by leading to senescence,defective autophagy,ER stress,mitochondrial and lysosomal dysfunction,apoptosis,fibro-blast activation,and immune cell recruitment.In this review,we summarize recent advances in un-derstanding the role of quality control components and intercellular crosstalk networks in RTECs,within the context of renal fibrosis.
9.Detection of five tick-borne pathogens in Maanshan City,Anhui Province,China
Guo-Dong YANG ; Kun YANG ; Liang-Liang JIANG ; Ming WU ; Ying HONG ; Ke-Xia XIANG ; Jia HE ; Lei GONG ; Dan-Dan SONG ; Ming-Jia BAO ; Xing-Zhou LI ; Tian QIN ; Yan-Hua WANG
Chinese Journal of Zoonoses 2024;40(4):308-314
Here,5 important pathogens carried by ticks in Maanshan City,Anhui Province,China were identified.In to-tal,642 ticks were collected from 13 villages around Maanshan City and identified by morphological and mitochondrial COI genes.The 16S rRNA gene of Francisella tularensis,ssrA gene of Bartonella,16S rRNA,ompA and ompB genes of Rickett-sia,16S rRNA and gltA genes of Anaplasma,and groEL and rpoB genes of Coxiella were sequenced.Reference sequences were retrieved from a public database.Phylogenetic trees were constructed with MEG A1 1.0 software.In total,36 Rickettsiae isolates were detected in 640 Haemaphysalis longicornis ticks,which included 20 isolates of Rickettsia heilongjian-gensis,16 of Candidatus Rickettsia jingxinensis,2 of Ana-plasma bovis,and 186 of Coxiella-like endosymbiont.R.hei-longjiangensis HY2 detected in this study and Anhui B8 strain,Ca.R.jingxinensis QL3 and those from Shanxi Prov-ince and Jiangsu Province,A.bovis JX4 and those from Shanxi Province were clustered on the same branch.Overall,17 ticks had combined infections and none of the 5 bacteria were detected in two Amblyomma testudinarium ticks.This is the first report of Ca.R.jingxinensis detected in H.longicornis ticks from Anhui Province.It is recommended that the two types of Rickettsia that cause spotted fever and A.bovis should be reported to local health authorities to initiate appropriate prevention and control measures.
10.Effects of neutrophilic granule protein on the expression of lipocalin 2 in inflammatory macrophages
Jing WANG ; Ji CHENG ; Quanwei BAO ; Junyu ZHU ; Huaping LIANG
Chinese Critical Care Medicine 2024;36(10):1033-1037
Objective:To explore the effects of neutrophilic granule protein (NGP) on the expression of lipocalin 2 (LCN2) in inflammatory macrophages and its mechanism.Methods:NGP-high-expressed RAW264.7 cells (NGP/RAW cells) and negative control RAW264.7 cells (NC/RAW cells) were cultured in vitro. Primary peritoneal macrophages of NGP-high-expressed mice and wild-type C57BL/6 mice were extracted, then cultured in vitro. The cell inflammatory model was established by stimulating with 10 mg/L lipopolysaccharide (LPS, LPS group), and the phosphate buffer solution (PBS) control group was set up. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of LCN2 in different types of cells. The protein expression of phosphorylated signal transduction and activator of transcription 1 (p-STAT1) was detected with Western blotting. Other NGP/RAW cells and NC/RAW cells were treated with 10 mg/L LPS, 5 mg/L STAT1 pathway inhibitor (fludarabine)+10 mg/L LPS, respectively. The PBS control group was set up. ELISA was used to detect the level of LCN2. Results:In different types of cells, the levels of LCN2 were increased significantly after LPS stimulation in the LPS group as compared with those in the PBS control group, and peaked at 24 hours (μmol/L: 25.61±1.02 vs. 0.46±0.02 in NC/RAW cells, 74.51±2.14 vs. 0.25±0.04 in NGP/RAW cells, 10.13±0.22 vs. 0.01±0.01 in primary macrophages of wild-type C57BL/6 mice, 28.35±0.61 vs. 0.08±0.01 in primary macrophages of NGP-high-expressed mice, all P < 0.05), indicating that the expression of LCN2 in macrophages altered during inflammation reaction. The level of LCN2 in NGP/RAW cells was found significantly increased at different time points after LPS stimulation comparing with that in NC/RAW cells (μmol/L: 8.32±0.22 vs. 3.12±0.11 at 6 hours, 23.12±0.86 vs. 8.12±0.32 at 12 hours, 74.51±2.14 vs. 25.61±1.02 at 24 hours, all P < 0.05), along with the expression of p-STAT1 was significantly up-regulated. The level of LCN2 in the primary macrophages of NGP-high-expressed mice was also significantly increased at 24 hours after LPS stimulation comparing with that in the primary macrophages of wild-type C57BL/6 mice (μmol/L: 28.35±0.61 vs. 10.13±0.22, P < 0.05). However, after pretreated with STAT1 pathway inhibitors, the production of LCN2 in NGP/RAW cells was decreased significantly comparing with that in the LPS group (μmol/L: 6.81±0.19 vs. 22.54±0.58, P < 0.05). But the inhibitors had no significant effect on LCN2 production in NC/RAW cells showing no significant difference as compared with LPS group (μmol/L: 8.04±0.20 vs. 7.86±0.15, P > 0.05), indicating that NGP could up-regulate the expression of LCN2 in macrophages stimulated by LPS by promoting STAT1 activation. Conclusion:NGP could positively regulate LCN2 expression in inflammatory macrophages by activating STAT1 pathway.


Result Analysis
Print
Save
E-mail