1.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
2.Rapid Determination of 32 Kinds of Veterinary Drug Residues in Eggs Using Modified QuEChERS Based on Reduced Graphene Oxide-coated Melamine Sponge by Ultra-High Liquid Chromatography-Tandem Mass Spectrometry
Xu XU ; Jia LYU ; Lan-Rui YANG ; Zhu-Chen HOU ; Bao-Cheng JI ; Yan-Hong BAI
Chinese Journal of Analytical Chemistry 2024;52(1):121-129,中插38-中插43
A rapid analytical method for simultaneous determination of 32 kinds of multi-residue veterinary drugs in eggs was developed using a modified QuEChERS technique based on a reduced graphene oxide-coated melamine sponge(r-GO@MeS)by ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS).The influences of graphene oxide(GO)concentrations,sponge dosages,and purification modes on drug recoveries were investigated during the purification process.The optimal purification conditions involved using a GO concentration of 0.5 mg/mL,a sponge dosage of 6.0 cm3/mL,and a dynamic purification mode of 5 extrusion cycles.Separation was achieved using an Agilent Eclipse Plus C18 RRHD column(100 mm×2.1 mm,1.8 μm),and quantitative analysis was performed by the external standard method using an electrospray ionization source(ESI)in multiple reaction monitoring(MRM)mode.The results showed that all 32 kinds of veterinary drugs exhibited good linear correlation with coefficients greater than 0.999,and matrix effects(MEs)ranging from?7.8%to 18.9%.The limits of detection(LODs)and quantification(LOQs)ranged from 0.2 to 10.2 μg/kg and from 0.6 to 28.0 μg/kg,respectively.The recoveries for the three spiked levels were in the range of 66.5%?117.5%,with intra-day and inter-day precision(Relative standard deviation)below 13.3%and 16.3%,respectively.The synthetic r-GO@MeS exhibited efficient matrix purification without the need of high-speed centrifugation or strong magnetic field assistance.This significantly shorted the sample pretreatment time and improved the convenience of the matrix purification process.Combined with UPLC-MS/MS,the method was suitable for the rapid determination of multi-residue veterinary drugs in eggs.
3.Effects of neutrophilic granule protein on the expression of lipocalin 2 in inflammatory macrophages
Jing WANG ; Ji CHENG ; Quanwei BAO ; Junyu ZHU ; Huaping LIANG
Chinese Critical Care Medicine 2024;36(10):1033-1037
Objective:To explore the effects of neutrophilic granule protein (NGP) on the expression of lipocalin 2 (LCN2) in inflammatory macrophages and its mechanism.Methods:NGP-high-expressed RAW264.7 cells (NGP/RAW cells) and negative control RAW264.7 cells (NC/RAW cells) were cultured in vitro. Primary peritoneal macrophages of NGP-high-expressed mice and wild-type C57BL/6 mice were extracted, then cultured in vitro. The cell inflammatory model was established by stimulating with 10 mg/L lipopolysaccharide (LPS, LPS group), and the phosphate buffer solution (PBS) control group was set up. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of LCN2 in different types of cells. The protein expression of phosphorylated signal transduction and activator of transcription 1 (p-STAT1) was detected with Western blotting. Other NGP/RAW cells and NC/RAW cells were treated with 10 mg/L LPS, 5 mg/L STAT1 pathway inhibitor (fludarabine)+10 mg/L LPS, respectively. The PBS control group was set up. ELISA was used to detect the level of LCN2. Results:In different types of cells, the levels of LCN2 were increased significantly after LPS stimulation in the LPS group as compared with those in the PBS control group, and peaked at 24 hours (μmol/L: 25.61±1.02 vs. 0.46±0.02 in NC/RAW cells, 74.51±2.14 vs. 0.25±0.04 in NGP/RAW cells, 10.13±0.22 vs. 0.01±0.01 in primary macrophages of wild-type C57BL/6 mice, 28.35±0.61 vs. 0.08±0.01 in primary macrophages of NGP-high-expressed mice, all P < 0.05), indicating that the expression of LCN2 in macrophages altered during inflammation reaction. The level of LCN2 in NGP/RAW cells was found significantly increased at different time points after LPS stimulation comparing with that in NC/RAW cells (μmol/L: 8.32±0.22 vs. 3.12±0.11 at 6 hours, 23.12±0.86 vs. 8.12±0.32 at 12 hours, 74.51±2.14 vs. 25.61±1.02 at 24 hours, all P < 0.05), along with the expression of p-STAT1 was significantly up-regulated. The level of LCN2 in the primary macrophages of NGP-high-expressed mice was also significantly increased at 24 hours after LPS stimulation comparing with that in the primary macrophages of wild-type C57BL/6 mice (μmol/L: 28.35±0.61 vs. 10.13±0.22, P < 0.05). However, after pretreated with STAT1 pathway inhibitors, the production of LCN2 in NGP/RAW cells was decreased significantly comparing with that in the LPS group (μmol/L: 6.81±0.19 vs. 22.54±0.58, P < 0.05). But the inhibitors had no significant effect on LCN2 production in NC/RAW cells showing no significant difference as compared with LPS group (μmol/L: 8.04±0.20 vs. 7.86±0.15, P > 0.05), indicating that NGP could up-regulate the expression of LCN2 in macrophages stimulated by LPS by promoting STAT1 activation. Conclusion:NGP could positively regulate LCN2 expression in inflammatory macrophages by activating STAT1 pathway.
4.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
5.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
6.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Preclinical study of T cell receptor specifically reactive with KRAS G12V mutation in the treatment of malignant tumors.
Xiao Jing CHENG ; Dong JIANG ; Lian Hai ZHANG ; Jiang Hua WANG ; Ya Zhen LI ; Jia Hui ZHAI ; Bao Qi YAN ; Lu Lu ZHANG ; Xing Wang XIE ; Zi Yu LI ; Jia Fu JI
Journal of Peking University(Health Sciences) 2022;54(5):884-895
OBJECTIVE:
KRAS gene is one of the most common mutations of proto-oncogenes in human tumors, G12V is one of the most common mutation types for KRAS. It's challenging to chemically acquire the targeted drug for this mutation. Recent studies reported that this mutation peptides can form a neoepitope for T cell recognition. Our study aims to clone the T cell receptor (TCR) which specifically recognizes the neoepitope for KRAS G12V mutation and constructs TCR engineered T cells (TCR-T), and to investigate if TCR-Ts have strong antitumor response ability.
METHODS:
In this study, tumor infiltrating lymphocytes were obtained from one colorectal cancer patient carrying KRAS G12V mutation. Tumor-reactive TCR was obtained by single-cell RT-5' rapid-amplification of cDNA ends PCR analysis and introduced into peripheral blood lymphocytes to generate TCR-Ts.
RESULTS:
We obtained a high-affinity TCR sequence that specifically recognized the HLA-A*11:01-restricted KRAS G12V8-16 epitope: KVA11-01. KVA11-01 TCR-T could significantly kill various tumor cells such as PANC-1, SW480 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V), and secreting high levels of interferon-γ (IFN-γ). Non-specific killing experiments suggested KVA11-01 specifically recognized tumor cells expressing both mutant KRAS G12V and HLA-A*11:01. In vivo assay, tumor inhibition experiments demonstrated that infusion of approximately 1E7 KVA11-01 TCR-T could significantly inhibit the growth of subcuta-neously transplanted tumors of PANC-1 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V) cells in nude mice. No destruction of the morphologies of the liver, spleen and brain were observed. We also found that KVA11-01 TCR-T could significantly infiltrate into tumor tissue and had a better homing ability.
CONCLUSION
KVA11-01 TCR-T cells can effectively target a variety of malignant tumor cells carrying KRAS G12V mutation through in vitro and in vivo assay. KVA11-01 TCR-T cells have excellent biological activity, high specificity of target antigen and homing ability into solid tumor tissue. KVA11-01 TCR-T is expected to be an effective treatment for patients with KRAS G12V mutant solid malignancies.
Animals
;
DNA, Complementary
;
Epitopes
;
HLA-A Antigens
;
Humans
;
Interferon-gamma
;
Mice
;
Mice, Nude
;
Mutation
;
Neoplasms
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Receptors, Antigen, T-Cell/genetics*
10.Risk factors of bone cement leakage after percutaneous vertebroplasty for osteoporotic vertebral compression fracture
Yi ZHANG ; Hongwei KOU ; Guowei SHANG ; Yanhui JI ; Tian CHENG ; Xiangrong CHEN ; Deming BAO ; Junjie GUO ; Fanguo KONG ; Yuwei LI ; Chengqi ZHANG ; Huimin ZHU ; Jimin PEI ; Haijiao WANG ; Hongjian LIU
Chinese Journal of Trauma 2022;38(5):396-400
Objective:To investigate the risk factors of bone cement leakage after percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF).Methods:A multi-center, large-sample, case-control study was carried out to analyze the clinical data of 2 273 OVCF patients (2 689 vertebrae) undergone PVP at four hospitals between May 2018 and October 2021, including 994 males and 1 279 females, with the age of 52-91 years [(69.1±3.1)years]. Of all, 581 patients (604 vertebrae) were allocated to leakage group and 1 692 patients (2 085 vertebrae) to no leakage group according to the occurrence of bone cement leakage. The gender, age, fracture sites, vertebral compression degree, endplate integrity of fractured vertebrae, surgical segments, surgical approaches and bone cement injection volume were recorded. Univariate analysis was used to investigate the correlation between those indicators with bone cement leakage. Multivariate Logistic regression analysis was used to identify the independent risk factors for bone cement leakage.Results:Univariate analysis showed that gender, age, fracture sites, vertebral compression degree, bone cement injection volume were related to bone cement leakage after PVP ( P<0.05 or 0.01), but no correlation was found in the endplate integrity of fractured vertebrae, surgical segments and surgical approaches (all P>0.05). Multivariate Logistic regression analysis showed that fracture sites ( OR=1.68, 95% CI 1.11-2.55, P<0.05), vertebral compression degree more than 40% ( OR=1.98, 95% CI 1.29-3.02, P<0.01), bone cement injection volume greater than or equal to 5.5 ml ( OR=1.55, 95% CI 1.07-2.26, P<0.05) were significantly associated with bone cement leakage after PVP. Conclusion:Thoracic vertebral fracture, vertebral compression degree more than 40% and bone cement injection volume greater than or equal to 5.5 ml are independent risk factors for bone cement leakage after PVP in OVCF.

Result Analysis
Print
Save
E-mail