1.Association between brain glucose metabolism and cardiac dysfunction in patients with ischemic heart disease undergoing (18)F-FDG PET/CT imaging.
Xia LU ; Bin Bin NIE ; Ming Kai YUN ; Zi Wei ZHU ; Xiao Fen XIE ; Tian Tian MOU ; Hong Zhi MI ; Yong Xiang WEI ; Xiang LI ; Bao Ci SHAN ; Xiao Li ZHANG
Chinese Journal of Cardiology 2020;48(3):211-216
Objective: To evaluate the relationship between the brain glucose metabolism and left ventricular function parameters, and to explore the cerebral glucose metabolism reduction regions in patients with ischemic heart disease (IHD). Methods: A total of 110 consecutive IHD patients who underwent gated (99)Tc(m)-sestamibi (MIBI) SPECT/CT myocardial perfusion imaging, gated (18)F-fluorodeoxyglucose (FDG) PET/CT myocardial and brain glucose metabolic imaging within three days in Beijing Anzhen Hospital from April 2016 to October 2017, were enrolled in this study. Left ventricular functional parameters of SPECT/CT and PET/CT including end-diastolic volume (EDV), end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) were analyzed by QGS software. Viable myocardium and myocardial infarction region were determined by 17-segment and 5 score system, and the ratio of viable myocardium and scar myocardium was calculated. According to the range of viable myocardium, the patients were divided into viable myocardium<10% group (n=44), viable myocardium 10%-<20% group (n=36) and viable myocardium≥20% group (n=30). Pearson correlation analysis was used to analyze the correlation between the range of viable myocardium and scar myocardium and the level of cerebral glucose metabolism. Brain glucose metabolism determined by the mean of standardized uptake value (SUV(mean)) was analyzed by SPM. The ratio of SUV(mean) in whole brain and SUV(mean) in cerebellum were calculated, namely taget/background ratio (TBR). Differences in cerebral glucose metabolism among various groups were analyzed by SPM. Results: There were 101 males, and age was (57±10) years in this cohort. The extent of viable myocardium and the extent of scar, LVEF evaluated by SPECT/CT and PET/CT were significantly correlated with TBR (r=0.280, r=-0.329, r=0.188, r=0.215 respectively,all P<0.05). TBR value was significantly lower in viable myocardium<10% group, compared with viable myocardium 10%-<20% group (1.25±0.97 vs. 1.32±0.17, P<0.05) and viable myocardium≥20% group (1.25±0.97 vs. 1.34±0.16, P<0.05). Furthermore, in comparison with viable myocardium≥20% group, the hypo-metabolic regions of viable myocardium<10% group were located in the precuneus, frontal lobe, postcentral gyrus, parietal lobe, temporal lobe, and so on. Conclusions: There is a correlation between impaired left ventricular function and brain glucose metabolism in IHD patients. In IHD patients with low myocardial viability, the level of glucose metabolism in the whole brain is decreased, especially in the brain functional areas related to cognitive function.
Aged
;
Brain
;
Fluorodeoxyglucose F18
;
Glucose
;
Humans
;
Male
;
Middle Aged
;
Positron Emission Tomography Computed Tomography
;
Radiopharmaceuticals
;
Stroke Volume
;
Tomography, Emission-Computed, Single-Photon
;
Ventricular Function, Left