1.Analysis of external quality assessment in laboratory of workplace on-site sampling and testing skills in occupational health technical service institutions in China in 2023
Zhifeng HUANG ; Zuokan LIN ; Weihui WANG ; Ziqun ZHANG ; Chuan WU ; Weifeng RONG ; Banghua WU
China Occupational Medicine 2024;51(3):320-324
Objective To analyze the problems and differences in workplace on-site sampling and testing skills in external quality assessment in laboratory among occupational health technical service institutions. Methods A total of 108 occupational health technical service institutions nationwide, participated in the external quality assessment in laboratory of the on-site individual sampling operation skills for silica dust (hereinafter refer to as "silica dust sampling assessment") and on-site detection operation skills for carbon monoxide (hereinafter refer to as " carbon monoxide sampling assessment") in 2023, were selected as the research subjects. The result of the assessment was analyzed. Results The qualification rate of the institutions for the silica dust sampling assessment was 98.1%. The unqualified rate of institutions in the Pearl River Delta region was lower than that in non-Pearl River Delta regions (0.0% vs 11.1%, P<0.017). The excellence rate was higher in public institutions than that in private enterprises (73.5% vs 40.0%, P<0.017). The unqualified rate of institutions with permit was lower than that of institutions without permit (0.0% vs 13.3%, P<0.05). The qualification rate of the institutions for the carbon monoxide sampling assessment was 79.4%. The proportion of the institutes, whose results of carbon monoxide standard gas (gas bag) deviation was >±20.0% was higher in private enterprises than that in public institutions (32.8% vs 7.1%, P<0.017). In terms of the normativity of on-site individual sampling for silica dust, the rates of conducting air tightness checks before sampling, correct disassembly and installation and correct placement direction of dust sampling heads, and correct flow for calibration based on the provided dust sampling heads were low, at 53.7%, 33.3%, and 14.8%, respectively. In terms of the normativity of on-site detection of carbon monoxide, the accuracy rate of converting results by on-site detection individuals was low, at only 57.8%. ConclusionIt is necessary to further strengthen the training of theoretical knowledge and practical skills of individuals in occupational health technical service institutions in Guangdong Province, especially to enhance the capacity of occupational health technical services in non-Pearl River Delta regions of the province.
2.Metabolomics study on occupational acute methyl acetate poisoning using patient plasma
Yiru QIN ; Anping MA ; Jingjing QIU ; Yin HAN ; Jiayun WU ; Zuofei XIE ; Yangle SUN ; Junyi HUANG ; Ming DONG ; Weifeng RONG ; Banghua WU ; Shijie HU
China Occupational Medicine 2023;50(2):127-132
3.Determination of thallium and its soluble compounds in workplace air by inductively coupled plasma mass spectrometry
Zhanhong YANG ; Chuan WU ; Ming DONG ; Xiaoting LUO ; Weihui WANG ; Junyi HUANG ; Weifeng RONG ; Banghua WU
China Occupational Medicine 2023;50(4):447-450
Objective To establish a method for the determination of thallium and its soluble compounds in workplace air using microporous filter membrane sampling and inductively coupled plasma mass spectrometry (ICP-MS). Methods Thallium and its soluble compounds in workplace air were collected using microporous filter membranes, digested with nitric acid, quantified using lutetium internal standard method, and detected by ICP-MS. Results The linear range of thallium was 0.00 to 600.00 μg/L, with the correlation coefficient of 1.000. The detection limit was 0.08 μg/L, and the lower limit of quantification was 0.26 μg/L. The minimum detection concentration and minimum quantitation concentration of thallium of 75.00 L workplace air were 1.0×10-5 and 3.0×10-5 mg/m3, respectively. The minimum detection concentration and minimum quantitation concentration of thallium of 480.00 L workplace air was 2.0×10-6 and 5.0×10-6 mg/m3, respectively. The recovery rate of spiking was 100.82%-103.44%, and the relative standard deviation within- and between-batches was 1.50%-3.32% and 1.32%-3.11%, respectively. The sample could be stored at room temperature for at least 14 days. Conclusion This method can be used for the detection of thallium and its soluble compounds in workplace air.
4.Multicenter retrospective investigation and analysis of the rationality of the application of human albumin in cardiac surgery during the perioperative period
Wenfei PAN ; Huan YU ; Dasheng DANG ; Lijuan CHEN ; Te LI ; Tianlu SHI ; Banghua HUANG ; Boxia LI ; Xiaoxue GONG ; Ying WANG
Chinese Journal of Pharmacoepidemiology 2024;33(2):176-183
Objective To investigate the clinical application of perioperative human serum albumin(HSA)in cardiac surgery in multiple regions in China,and to evaluate the rationality of its clinical application in conjunction with the clinical guidelines,in order to provide a reference for promoting the rational application of HSA.Methods The medical records of patients who underwent cardiac surgery from April to June 2019 in eight hospitals across the country were retrospectively collected.The statistical information on patients'general information,the dosage,course of treatment,and cost of HSA,and the serum albumin level before and after medication was analyzed to evaluate the use of HSA.Relevant evaluation criteria were established,and the rationality of its medication was evaluated.Results Data from a total of 449 patients were included for analysis,the appropriate rate of medication was 81.1%.The course of medication was mostly>2-5 days and the total amount of HSA was mostly 50-99 g.The main purpose of medicaiton were improving colloid osmotic pressure,reducing exudation to improve interstitial edema,postoperative volume expansion.Conclusion Clinical attention should be paid to ensure the rational application of HSA in cardiac surgery during the perioperative period and prevent the abuse of blood products.
5.Distribution of copper and zinc level in urine of general population in eight provinces of China.
Xingfu PAN ; Chunguang DING ; Yajuan PAN ; Aihua ZHANG ; Banghua WU ; Hanlin HUANG ; Chun ZHU ; Deye LIU ; Baoli ZHU ; Guang XU ; Hua SHAO ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2015;49(10):919-923
OBJECTIVETo describe the distribution of zinc (Zn) and copper (Cu) in urine samples of generalpopulation in eight provinces of China, to analyze their characteristics of distribution between different region, gender and age-cohorts, and to provide the baseline of themetabolites in the general population.
METHODSFrom 2009 to 2010, 18 120 subjects from the general population aged from 6 to 60 years old were recruited from 24 areas among 8 provinces of China mainland by random sampling. The environmental and physical condition characteristics were collected from questionnaires, and urine samples were collected at the mean time. The levels of Zn and Cu in urine were measured using ICP-MS. Data were analyzed by statistical methods to compare the distribution characteristics of Zn and Cu among populations with different ages and genders.
RESULTSTotally, the median of Cu and Zn in urine were 9.28 and 115.47 µg/L respectively; and the inter-quartile range of Cu and Zn were 2.66-16.09 and 35.32-265.15 µg/L respectively. The median of Cu in male and female were 9.90 and 8.60 µg/L (Z=-5.63, P<0.001), and Zn in male and female were 140.44 and 95.27 µg/L (Z=-14.79, P<0.001). The median of Cu among the groups aged 6-12, 13-16, 17-20, 21-30, 31-45 and 46-60 years old were 9.30, 10.14, 9.67, 9.33, 8.38 and 8.74 µg/L (χ2=70.94, P<0.001), respectively, and the median of Zn 130.83, 132.07, 139.34, 109.3, 78.74 and 109.51 µg/L ((χ2=146.00, P<0.001), respectively.There was statistically significant differences in urinary Cu and Zn levels between male and female, and among the different age groups.
CONCLUSIONThe Cu and Zn levels and distribution in urine among general population between 2009 and 2010 in China were reported in this article. These basic data in China will provide scientific and reliable reference for further scientific research.
Adolescent ; Adult ; Age Factors ; Child ; China ; Copper ; urine ; Environment ; Female ; Humans ; Male ; Middle Aged ; Sex Factors ; Surveys and Questionnaires ; Zinc ; urine
6.Distribution of manganese, cobalt and molybdenum in blood and urine among general population in 8 provinces of China.
Yajuan PAN ; Chunguang DING ; Aihua ZHANG ; Banghua WU ; Hanlin HUANG ; Chun ZHU ; Deye LIU ; Baoli ZHU ; Guang XU ; Hua SHAO ; Shanzhuo PENG ; Xianlong JIANG ; Chunxiang ZHAO ; Changcheng HAN ; Hongrong JI ; Shanfa YU ; Xiaoxi ZHANG ; Longlian ZHANG ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;48(9):784-790
OBJECTIVETo evaluated the manganese (Mn), cobalt (Co) and molybdenum (Mo) levels in blood and urine among general population in China, and thereby to analyze their prevalent features.
METHODSFrom 2009 to 2010, a total of 18 120 subjects of general population aged 6-60 years were recruited from 24 districts in 8 provinces in eastern, central and western China mainland, by cluster random sampling method. The information about their living environment and health status were collected by questionnaire, and their blood and urine samples were also collected.Inductive coupled plasma mass spectrometry (ICP-MS) was applied to test the Mn, Co and Mo levels of blood and urine samples, and the Mn, Co, Mo distribution in blood and urine among groups of population in different ages and genders were then analyzed.
RESULTSAmong general population in China, the geometric mean (GM) of Mn concentration in blood was 8.98 µg/L. The Mn concentration in blood among males and females were separately 8.14 µg/L and 9.88 µg/L (Z = -18.84, P < 0.01). The GM of Mn concentration in urine was 0.63 µg/L. The Mn concentration in urine among males and females were separately 0.62 µg/L and 0.63 µg/L (Z = -0.67, P > 0.05). The geometric mean (GM) of Co concentration in blood was 0.194 µg/L. The Co concentration in blood among males and females were separately 0.166 µg/L and 0.225 µg/L (Z = -23.04, P < 0.01). The GM of Co concentration in urine was 0.282 µg/L. The Co concentration in urine among males and females were separately 0.260 µg/L and 0.307 µg/L (Z = -7.35, P < 0.01). The GM of Mo concentration in blood was 0.25 µg/L. The Mo concentration in blood among male and female group were separately 0.27 µg/L and 0.23 µg/L (Z = -5.03, P < 0.01). The GM of Mo concentration in urine was 27.7 µg/L. The Mo concentration in urine among males and females were 29.8 µg/L and 25.6 µg/L (Z = -6.31, P < 0.01), respectively.
CONCLUSIONThe Mn, Co and Mo levels in blood and urine varied by gender and area among general population in China, the study provided basic data evidence for the following Mn, Co and Mo biological monitoring studies in near future.
Adolescent ; Adult ; Child ; China ; epidemiology ; Cobalt ; Environmental Exposure ; Environmental Monitoring ; Female ; Humans ; Male ; Manganese ; Middle Aged ; Molybdenum
7.Distribution of copper and zinc in blood among general population from 8 provinces in China.
Xingfu PAN ; Chunguang DING ; Yajuan PAN ; Aihua ZHANG ; Banghua WU ; Hanlin HUANG ; Chun ZHU ; Deye LIU ; Baoli ZHU ; Guang XU ; Hua SHAO ; Shanzhuo PENG ; Xianlong JIANG ; Chunxiang ZHAO ; Changcheng HAN ; Hongrong JI ; Shanfa YU ; Xiaoxi ZHANG ; Longlian ZHANG ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;48(2):109-113
OBJECTIVETo investigate the level of zinc (Zn) and copper (Cu) in whole blood among general population from 8 provinces in China, and to analyze the characteristics of distribution among different regions.
METHODSThis cross-sectional study was performed in 8 provinces from eastern, middle and western China between 2009 and 2010, including 13 110 subjects from 24 regions, and the blood and urine samples were collected. The ICP-MS was applied to test the content of ICP-MS in blood samples, and the results were used to analyze the characteristics of contents and distributions of Zn and Cu among population from different ages, genders and regions groups.
RESULTSTotally, the mean (95%CI) contents of Cu and Zn in blood were 795 (791-799)µg/L and 3 996(3 976-4 015) µg/L, respectively. The characteristics of distribution of Cu content were as followed, the content of males were lower than it of females (male:767 µg/L; female: 822 µg/L, t = -13.302, P < 0.01). The contents of blood Cu in groups of people aging 6-12, 13-16, 17-20, 21-30, 31-45 and 46-60 years old were separately 860(853-868), 758(748-769), 734(728-734), 782(774-790), 811(795-827) and 820(815-826) µg/L. The differences showed statistical significance (F = 78.77, P < 0.01). The blood Cu content of people in eastern China (800µg/L) were also significantly higher than it in middle (774 µg/L)and western China (782 µg/L) (F = 10.94, P < 0.01). Distribution of blood Zn content showed characteristics as follows: the Zn content was higher in males than in females (male 4 085 µg/L and female 3 908 µg/L, t = 8.78, P < 0.01). The contents of blood Zn in groups of people aging 6-12, 13-16, 17-20, 21-30, 31-45 and 46-60 years old were separately 3 306 (3 261-3 350), 3 888 (3 839-3 937), 3 948 (3 902-3 994), 4 272(4 228-4 315), 4 231(4 180-4 281) and 4 250 (4 205-4 294)µg/L, which showed significant statistical differences (F = 233.68, P < 0.01). The blood Zn content of people in eastern China (3 938 µg/L) were significantly lower than it in middle (4 237 µg/L)and western China (4 105 µg/L) (F = 53.16, P < 0.01). In addition, the study also compared the relation between content of Cu and Zn and the frequency of eating seafood. The results found that the frequency of eating seafood could influence the content of Cu and Zn (Cu: F = 13.54, P < 0.01; Zn: F = 200.20, P < 0.01).
CONCLUSIONThe contents and distributions of Cu and Zn in blood differs among people from different groups in ages, genders and regions. The baseline data of this study provided reliable scientific evidence for further research.
Adolescent ; Adult ; Child ; China ; epidemiology ; Copper ; blood ; Cross-Sectional Studies ; Female ; Humans ; Male ; Middle Aged ; Young Adult ; Zinc ; blood
8.Study of distribution and influencing factors of arsenic in whole blood and urine among population in 8 provinces in China.
Chunguang DING ; Yajuan PAN ; Aihua ZHANG ; Banghua WU ; Hanlin HUANG ; Chun ZHU ; Deye LIU ; Baoli ZHU ; Guang XU ; Hua SHAO ; Shanzhuo PENG ; Xianlong JIANG ; Chunxiang ZHAO ; Changcheng HAN ; Hongrong JI ; Shanfa YU ; Xiaoxi ZHANG ; Longlian ZHANG ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;48(2):97-101
OBJECTIVETo evaluated the levels of arsenic (As) in blood and urine among general population in China and analyze its influencing factors.
METHODSA total of 18 120 subjects from general population aged 6-60 years were recruited from 24 districts in 8 provinces in eastern, central and western China mainland from 2009 to 2010, by cluster random sampling method. Blood samples and urine samples were collected, the information of the life-style was collected by questionnaire.Inductive coupled plasma mass spectrometry was applied to test the As level in the samples, and the distribution of As in blood and urine for different ages, genders, areas and life habits were then analyzed.
RESULTSThe geometric mean (GM) of blood As concentration among general population was 2.33 µg/L;the GM of blood As in male (2.35 µg/L) was higher than and female (2.30 µg/L) (Z = -1.42, P < 0.05); from eastern, central to western China, the blood As level were 2.94, 1.30 and 0.98 µg/L (χ(2) = 643.22, P < 0.05) , respectively; the GM in smokers (2.84 µg/L) was higher than non-smokers (2.27) (Z = -6.28, P < 0.05) ;the seafood consumer had a higher blood As level (2.59 µg/L) than people not consuming seafood (1.47 µg/L) (Z = -23.68, P < 0.05). The urine As level of the whole population was 13.72 µg/L;while its GM in male (14.10 µg/L) was higher than female (13.33 µg/L) (Z = -3.94, P < 0.05); the values from eastern, central to western China were 14.14, 16.02 and 9.57 µg/L (χ(2) = 353.89, P < 0.05), respectively;the level in smokers (16.06 µg/L) was higher than nonsmokers (13.70 µg/L) (Z = -2.63, P < 0.05); the level in seafood consumers (14.82 µg/L) was higher than people not consuming seafood (10.99 µg/L) (Z = -3.20, P < 0.05). The blood As level had a positive correlation with urine As level (correlation coefficient:0.285, P < 0.05).
CONCLUSIONThe As level in blood and urine varied by gender and area among general population in China, and related to life-styles. There was a positive correlation between As level in blood and that in urine.
Adolescent ; Adult ; Arsenic ; blood ; urine ; Child ; China ; epidemiology ; Cross-Sectional Studies ; Environmental Exposure ; Female ; Humans ; Male ; Middle Aged ; Sentinel Surveillance ; Young Adult
9.Study of distribution and influencing factors of lead and cadmium in whole blood and urine among population in 8 provinces in China.
Chunguang DING ; Yajuan PAN ; Aihua ZHANG ; Banghua WU ; Hanlin HUANG ; Chun ZHU ; Deye LIU ; Baoli ZHU ; Guang XU ; Hua SHAO ; Shanzhuo PENG ; Xianlong JIANG ; Chunxiang ZHAO ; Changcheng HAN ; Hongrong JI ; Shanfa YU ; Xiaoxi ZHANG ; Longlian ZHANG ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;48(2):91-96
OBJECTIVETo evaluate the levels of lead (Pb) and cadmium (Cd) in blood and urine among general population in China, and thereby analyze their prevalent features.
METHODSA total of 18 120 subjects from general population aged 6-60 years were recruited from 24 districts in 8 provinces in eastern, central and western China mainland from 2009 to 2010, by cluster random sampling method. The blood samples and urine samples of these people were collected. The questionnaire survey was used to collect the information of the living environment and health conditions.Inductive coupled plasma mass spectrometry was applied to test the Pb and Cd levels in the samples, and the distribution of Pb and Cd in blood and urine for different ages, genders, areas and life habits were then analyzed.
RESULTSAmong the general population in China, the geometric mean (GM) of blood Pb concentration was 34.9 µg/L; the GM of blood Pb in male and female groups were 40.1 and 30.4 µg/L (Z = -28.05, P < 0.05), respectively; the GM from eastern, central and western China were 31.2, 38.8 and 58.9 µg/L (χ(2) = 1 483.33, P < 0.05) , respectively. The GM of urine Pb of the whole population was 1.05 µg/L;while the GM in male and female groups were 1.06 µg/L and 1.05 µg/L (Z = -0.73, P > 0.05) , respectively;the values from eastern, central and western China were 0.76, 2.85 and 3.22 µg/L (χ(2) = 1 982.11, P < 0.05), respectively. The GM of blood Cd concentration among general population was 0.49 µg/L; and the values in male and female group were 0.60 and 0.41 µg/L (Z = -11.79, P < 0.05) , respectively; the GM from eastern, central and western China were 0.45, 0.65 and 0.67 µg/L (χ(2) = 69.87, P < 0.05), respectively; the GM of urine Cd concentration of the whole population was 0.28 µg/L, while the GM in male and female groups were 0.29 and 0.28 µg/L (Z = -3.86, P < 0.05), respectively; the values from eastern, central and western China were 0.29,0.42 and 0.18 µg/L (χ(2) = 402.76, P < 0.05), respectively. the Spearman's rank correlation coefficient for Cd in blood and Cd in urine was 0.22, for Pb in blood and Pb in urine was 0.21. Both the correlations were statistic significant (P < 0.05).
CONCLUSIONThe Pb and Cd levels in blood and urine were relatively higher among general population in China varying by gender and area. There were positive correlations between Pb and Cd levels in blood and those in urine.
Adolescent ; Adult ; Cadmium ; blood ; urine ; Child ; China ; epidemiology ; Cross-Sectional Studies ; Environmental Exposure ; Female ; Humans ; Lead ; blood ; urine ; Male ; Middle Aged ; Sentinel Surveillance ; Young Adult
10.Distribution of manganese,cobalt and molybdenum in blood and urine among general population in 8 provinces of China
Yajuan PAN ; Chunguang DING ; Aihua ZHANG ; Banghua WU ; Hanlin HUANG ; Chun ZHU ; Deye LIU ; Baoli ZHU ; Guang XU ; Hua SHAO ; Shanzhuo PENG ; Xianlong JIANG ; Chunxiang ZHAO ; Changcheng HAN ; Hongrong JI ; Shanfa YU ; Xiaoxi ZHANG ; Longlian ZHANG ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;(9):784-790
Objective To evaluated the manganese (Mn), cobalt (Co) and molybdenum (Mo) levels in blood and urine among general population in China , and thereby to analyze their prevalent features.Methods From 2009 to 2010, a total of 18 120 subjects of general population aged 6-60 years were recruited from 24 districts in 8 provinces in eastern , central and western China mainland , by cluster random sampling method.The information about their living environment and health status were collected by questionnaire , and their blood and urine samples were also collected.Inductive coupled plasma mass spectrometry ( ICP-MS) was applied to test the Mn , Co and Mo levels of blood and urine samples , and the Mn, Co, Mo distribution in blood and urine among groups of population in different ages and genders were then analyzed.Results Among general population in China , the geometric mean ( GM) of Mn concentration in blood was 8.98 μg/L.The Mn concentration in blood among males and females were separately 8.14 μg/L and 9.88 μg/L ( Z =-18.84, P <0.01 ).The GM of Mn concentration in urine was 0.63 μg/L.The Mn concentration in urine among males and females were separately 0.62 μg/L and 0.63 μg/L ( Z =-0.67, P >0.05 ).The geometric mean ( GM ) of Co concentration in blood was 0.194 μg/L.The Co concentration in blood among males and females were separately 0.166 μg/L and 0.225 μg/L ( Z =-23.04, P <0.01 ).The GM of Co concentration in urine was 0.282 μg/L.The Co concentration in urine among males and females were separately 0.260μg/L and 0.307μg/L ( Z=-7.35, P<0.01).The GM of Mo concentration in blood was 0.25μg/L.The Mo concentration in blood among male and female group were separately 0.27 μg/L and 0.23 μg/L ( Z =-5.03, P <0.01 ).The GM of Mo concentration in urine was 27.7 μg/L.The Mo concentration in urine among males and females were 29.8 μg/L and 25.6μg/L (Z=-6.31,P<0.01), respectively.Conclusion The Mn, Co and Mo levels in blood and urine varied by gender and area among general population in China , the study provided basic data evidence for the following Mn , Co and Mo biological monitoring studies in near future.