1.Determination of dimethyl carbonate in workplace air by solvent desorption-gas chromatography
Jiaheng HE ; Jing YUAN ; Weifeng RONG ; Jiawen HU ; Ruibo MENG ; Guanlin CHEN ; Banghua WU
China Occupational Medicine 2023;50(2):181-184
2.Determination of four organotin compounds in human whole blood by high performance liquid chromatography-inductively coupled plasma-mass spectrometry
Anping MA ; Banghua WU ; Ming DONG ; Xiaolin RUAN ; Jingjing QIU ; Weifeng RONG ; Jiaheng HE
China Occupational Medicine 2023;50(6):712-716
{L-End}Objective To establish a method for the simultaneous determination of dimethyltin (DMT), trimethyltin (TMT), diethyltin (DET), and triethyltin (TET) in human whole blood using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (ICP-MS). {L-End}Methods The 1.0 mL of blood was added with 4.0 mL 65% aqueous solution (containing 6% acetic acid), extracted and separated by C4 column (150 mm×3 mm×3 μm) using a mobile phase of methanol and 4% acetic acid aqueous solution (containing 0.25 mmol/L tropolone) at a volume ratio of 35∶65, and detected by ICP-MS. {L-End}Results The linear range of DMT, TMT, DET, and TET was 30.60-550.80, 29.00-522.00, 46.10-829.80, and 34.05-612.90 μg/L, respectively. All correlation coefficients were 0.999. The detection limit of DMT, TMT, DET and TET was 21.40, 20.30, 32.27 and 23.80 μg/L, respectively. The recovery rate was 81.9%-104.9%. The within-run and between-run relative standard deviation was 1.6%-6.9% and 0.1%-10.0%, respectively. The samples can be stored at -20 ℃ and 4 ℃ for at least three days. {L-End}Conclusion This method can be used for trace analysis of DMT, TMT, DET, and TET in whole blood.
3.Two hundred forties three cases of hemorrhagic fever with renal syndrome and multiple organ failure in long-term prognosis
Rong GUO ; Banghua HE ; Zhihai ZHANG ; Youyi LU ; Jianbo LI
Chinese Journal of Experimental and Clinical Virology 2014;28(1):50-52
Objective Through the 243 cases of hemorrhagic fever with renal syndrome(HFRS) of multiple organ failure after more investigation to explore the impact of various factors and generate sequelae.HFRS caused MSOF rescue guidance,to develop a variety of measures to reduce complications.Methods 243 cases of various forms on a return visit to investigate the implementation of the relevant auxiliary examination,using a large sample count data U test and the sample mean T test,combined with the original medical records were analyzed.Results HFRS patients cured,the incidence of sequelae of 47.73%,the incidence of multiple system damage 39.15%,in each case up to three system damage sequelae,its incidence and disease,incentives,diagnosis time,circulatory failure correct time,the use of Losec and blockers,age,number of organ failure,organ failure,and the starting number of central nervous system dysfunction and other closely related.Conclusion Gastrointestinal dysfunction is the initial factor MSOF,two organ failure is the starting signal severe illness,central nervous system dysfunction is in critical condition and the prognosis is poor marks.
4.Analyzing the monitoring results of occupational hazards in the workplace of key industries in Guangdong Province, 2020-2023
Weifeng RONG ; Zuofei XIE ; Jiaheng HE ; Jing YUAN ; Jiawen HU ; Ruibo MENG ; Banghua WU
China Occupational Medicine 2024;51(1):54-59
ObjectiveTo understand the monitoring result of occupational hazard in the workplace of key industries in Guangdong Province from 2020 to 2023. Methods The data of occupational hazards in the workplace of 20 key industries in Guangdong Province from 2020 to 2023 were collected from the “Workplace Occupational Hazard Monitoring System” of the Chinese Disease Prevention and Control System subsystem. The monitoring result of occupational hazard factors, occupational health training, occupational health examination, occupational protection, detection of occupational hazardous agents such as dust, chemical substances and noise were analyzed. Results A total of 13 058 enterprises from key industries were recruited as the monitoring subjects in Guangdong Province. There were 290 large-, 1 342 medium-, 7 635 small-, and 3 791 micro-enterprises, with small and micro-enterprises accounting for 58.5% and 29.0% of the total, respectively. A total of 7 542 enterprises exceeded the national standard in the detection of occupational hazards, with a rate of 57.8%. A total of 1 942 517 workers from 13 058 enterprises were recruited, with 835 567 workers were exposed to occupational hazards, with a rate of 43.0%. The rate of occupational health training for enterprise leaders, occupational health management personnel, and workers was 71.9%, 73.8%, and 86.5%, respectively. The abnormal rate of occupational health examinations for workers exposed to noise, dust, and chemical agents was 2.0%, 0.6%, and 1.0%, respectively. The distribution rate of dust masks, anti-poisoning masks or face masks, and noise prevention earplugs or earmuffs was 83.3%, 71.3%, and 77.8%, respectively. The rate of installation of dust prevention facilities, anti-poisoning facilities, and noise prevention facilities was 85.6%, 81.2%, and 50.1%, respectively. The rate of exceeded the national standard of dust, noise in the worksites/types and workplaces showed a decreasing trend year by year (all P<0.01), while the rate of exceeded the national standard of chemical agents in worksites/types and workplaces showed an increasing trend year by year in various occupational hazards (all P<0.01). Conclusion Occupational hazards in the workplace of key industries in Guangdong Province are relatively common. The proportion of workers exposed to occupational hazards is relatively high. It is necessary to further improve the use of noise prevention facilities and protective equipment, strengthen occupational health training for enterprises throughout the province and regularly monitor occupational hazards to reduce the risk of occupational diseases.
5.Determination of two isomers of tetrachloroethane in urine by liquid-liquid extraction-gas chromatography
Fan WU ; Jiaheng HE ; Jing YUAN ; Ruibo MENG ; Weimin XIE ; Banghua WU ; Weifeng RONG
China Occupational Medicine 2024;51(1):85-89
ObjectiveTo establish a method for the determination of 1,1,1,2-tetrachloroethane (TeCA) and 1,1,2,2-TeCA in human urine using liquid-liquid extraction-gas chromatography. Methods The 5.0 mL urine sample was mixed with 2.0 g anhydrous sodium sulfate and 5.0 mL ethyl acetate, then vortexed mixing. The 1.0 mL extraction was separated by 100% dimethylpolysiloxane capillary gas chromatography column, detected by flame ionization detector, and quantified by an external standard method. Results The linear ranges of 1,1,1,2-TeCA and 1,1,2,2-TeCA were 0.250-50.750 mg/L, with both correlation coefficients of >0.999 9. The detection limit of 1,1,1,2-TeCA in urine was 0.020 mg/L, and the lower limit of quantification was 0.060 mg/L. The average recovery was 88.02%-101.32%, and the within-run and between-run relative standard deviations (RSDs) were 0.11%-0.47% and 0.39%-1.09%, respectively. The detection limit of 1,1,2,2-TeCA in urine was 0.050 mg/L, and the lower limit of quantification was 0.150 mg/L. The average recovery was 93.42%-101.32%, and the within-run and between-run RSDs were 0.28%-1.04% and 0.50%-1.03%, respectively. Both the 1,1,1,2-TeCA and 1,1,2,2-TeCA cannot be stored at room temperature. The 1,1,2,2-TeCA can be stored at 4 ℃ for at least three days. At -20 ℃, the 1,1,1,2-TeCA can only be stored for one day, while 1,1,2,2-TeCA can be stored for at least five days. Conclusion This method has high sensitivity, good specificity, simple sample pretreatment, and more intuitive and reliable results. It can be used to determine the level of 1,1,1,2-TeCA and 1,1,2,2-TeCA in urine of occupational population.
6. Detecting 1,1,1-trichloroethane and 1,1,2-trichloroethane in workplace air by solvent desorption-gas chromatography
Jiaheng HE ; Yongmei XIAO ; Weifeng RONG ; Jiawen HU ; Banghua WU
China Occupational Medicine 2019;46(02):225-232
OBJECTIVE: To establish a method for simultaneous determination of 1,1,1-trichloroethane(TCA) and 1,1,2-TCA in the workplace air by solvent desorption-gas chromatography. METHODS: The 1,1,1-TCA and 1,1,2-TCA in the workplace air were collected by activated carbon tube and desorbed with carbon disulfide. They were separated with DB-1(100.0% dimethyl polysiloxane) capillary column and detected by flame ionization detector. RESULTS: The good linear ranges of 1,1,1-TCA and 1,1,2-TCA were 1.340-1.338×10~4 and 1.440-1.442×10~4 mg/L, respectively. The correlation coefficients were greater than 0.999, with the detection limits of 0.100 and 0.140 mg/L, respectively. The average desorption efficiencies of 1,1,1-TCA and 1,1,2-TCA were 98.6%-99.6% and 94.9%-96.2%. The within-run and between-run relative standard deviations were 0.4%-0.9% and 0.5%-1.1%, respectively. The samples could be stored at room temperature for at least 14 days. CONCLUSION: This method has high desorption efficiency and sensitivity, good precision and simple operation, which is suitable for simultaneous detection of 1,1,1-TCA and 1,1,2-TCA in the workplace air.
7.Determination of two isomers of tetrachloroethane by solvent desorption-gas chromatography in workplace air
Jing YUAN ; Weiming XIE ; Fan WU ; Jiaheng HE ; Jiawen HU ; Ruibo MENG ; Weifeng RONG ; Banghua WU ; Chuan WU
China Occupational Medicine 2023;50(2):185-188
8.Advances in rapid detection methods of biotoxins in blood
Wenjie ZHANG ; Yiru QIN ; Zuofei XIE ; Anping MA ; Jingjing QIU ; Zuokan LIN ; Jiaheng HE ; Zhanhong YANG ; Weifeng RONG ; Banghua WU
China Occupational Medicine 2024;51(5):575-580
Biotoxins, which include bacterial, fungal, marine, plant, and animal toxins, are widespread in living and occupational environments, posing potential threats to human health. Rapid detection of biotoxins in blood is crucial for preventing health hazards and enabling timely disease diagnosis and treatment. Biosensors and immunoassay technologies have critical advantages in the rapid detection of biotoxins in blood. Common biosensors, such as surface plasmon resonance biosensors and fluorescent biosensors, enhance sensitivity and reduce detection limits through signal amplification. Common immunoassay methods, such as colloidal gold immunochromatography, fluorescence immunochromatography, and chemiluminescence immunoassay, improve detection efficacy and sensitivity through specific antibody-antigen binding and nanotechnology. However, current rapid detection technologies of bitoxins in blood face challenges such as matrix interference and insufficient specificity, and they fall short in high-throughput detection of multiple toxins simultaneously. Future developments should focus on improving sample pretreatment, innovating signal amplification methods, enhancing specificity on recognition of elements, and designing portable detection devices and high-throughput platforms for simultaneous toxin analysis. These advancements aim to improve the sensitivity and reliability of detection methods, providing more accurate and convenient solutions for biotoxin detection in blood.
9.Application of a new solid adsorbent tube for the determination of three kinds of epoxy eompounds in air
Weifeng RONG ; Weijie LING ; Banghua WU ; Xiaolin RUAN ; Jiawen HU ; Ruibo MENG ; Jiaheng HE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2020;38(11):859-863
Objective:To develop a new solid sorbent tube for simultaneously capturing ethylene oxide (EO) , propylene oxide (PO) and epichlorohydrin (ECH) in air, and establish a complete set of method.Methods:In June 2018, EO, PO and ECH in air were captured by the new solid sorbent tube filled with carbon aerogel adsorbent, desorbed with solution of 5% ( V/V) methanol-methylene chloride, separated through capillary chromatographic column, and then analyzed by gas chromatography-flame ionization detector. Results:The linear ranges of EO, PO and ECH were 0.24-960.00, 0.60-2384.00 and 0.12-472.40 mg/L respectively, and the related coefficients were between 0.99995-0.99997. The relative standard deviations ( RSD) within the group were 1.66%-4.09%, 1.36%-4.43%, and 1.99%-5.65%, respectively, and the RSD between the group were 2.69%-4.95%, 2.77%-5.30%, and 3.27%-6.67%, respectively. The average desorption efficiencies were 88.25%-94.50%, 98.17%-98.60%, and 97.79%-101.04%, respectively. The samples could be stored at 4 ℃ refrigerator for at least 27 days. Conclusion:The newly developed solid sorbent tube filled with carbon aerogel adsorbent and its complete set of gas chromatography method could be used for sampling and quantitative detection of EO, PO and ECH in workplace air.
10.Qualitative analysis of volatile organic components in chemicals using headspace gas chromatography-mass spectrometry
Ruibo MENG ; Weifeng RONG ; Jiawen HU ; Jiaheng HE ; Jing YUAN ; Jingjing QIU ; Zuokan LIN ; Ziqun ZHANG ; Banghua WU
China Occupational Medicine 2023;50(3):325-329
Objective To establish a rapid qualitative analysis method for volatile organic components in chemicals. Methods Headspace gas chromatography-mass spectrometry was used to qualitatively determine 19 volatile organic components, including benzene, 1,2-dichloroethane, and n-hexane, in chemicals. Different sample amounts, heating temperatures, heating times, and sample volumes were analyzed to assess their effects on detection results and optimize sampling conditions. Results Based on the set chromatography, the optimal sampling process of this method was as follows: 5.0 g sample in a 20.0 mL headspace bottle, incubated at 40 ℃ for 30 minutes in a constant-temperature drying incubator, and a 1.00 mL headspace gas injection. The within-run and between-run relative standard deviations of all components ranged from 0.00% to 21.05% and 0.00% to 33.33%, respectively. The samples stored in sealed glass containers were stable at room temperature for at least 60 days. Conclusion This method offers simplicity, good reproducibility, and stability, making it suitable for rapid qualitative analysis of volatile organic components in chemicals.