1.Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411).
Xue-Hai ZHOU ; Min-Min HUA ; Jia-Nan TANG ; Bang-Guo WU ; Xue-Mei WANG ; Chang-Gen SHI ; Yang YANG ; Jun WU ; Bin WU ; Bao-Li ZHANG ; Yi-Si SUN ; Tian-Cheng ZHANG ; Hui-Juan SHI
Asian Journal of Andrology 2025;27(1):120-128
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Spermatids/metabolism*
;
Spermatogenesis/physiology*
;
Spermatozoa/metabolism*
;
Thioredoxins/genetics*
2.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
3.Clinical trial of brexpiprazole in the treatment of adults with acute schizophrenia
Shu-Zhe ZHOU ; Liang LI ; Dong YANG ; Jin-Guo ZHAI ; Tao JIANG ; Yu-Zhong SHI ; Bin WU ; Xiang-Ping WU ; Ke-Qing LI ; Tie-Bang LIU ; Jie LI ; Shi-You TANG ; Li-Li WANG ; Xue-Yi WANG ; Yun-Long TAN ; Qi LIU ; Uki MOTOMICHI ; Ming-Ji XIAN ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):654-658
Objective To evaluate the efficacy and safety of brexpiprazole in treating acute schizophrenia.Methods Patients with schizophrenia were randomly divided into treatment group and control group.The treatment group was given brexpiprozole 2-4 mg·d-1 orally and the control group was given aripiprazole 10-20 mg·d-1orally,both were treated for 6 weeks.Clinical efficacy of the two groups,the response rate at endpoint,the changes from baseline to endpoint of Positive and Negative Syndrome Scale(PANSS),Clinical Global Impression-Improvement(CGI-S),Personal and Social Performance scale(PSP),PANSS Positive syndrome subscale,PANSS negative syndrome subscale were compared.The incidence of treatment-related adverse events in two groups were compared.Results There were 184 patients in treatment group and 186 patients in control group.After treatment,the response rates of treatment group and control group were 79.50%(140 cases/184 cases)and 82.40%(150 cases/186 cases),the scores of CGI-I of treatment group and control group were(2.00±1.20)and(1.90±1.01),with no significant difference(all P>0.05).From baseline to Week 6,the mean change of PANSS total score wese(-30.70±16.96)points in treatment group and(-32.20±17.00)points in control group,with no significant difference(P>0.05).The changes of CGI-S scores in treatment group and control group were(-2.00±1.27)and(-1.90±1.22)points,PSP scores were(18.80±14.77)and(19.20±14.55)points,PANSS positive syndrome scores were(-10.30±5.93)and(-10.80±5.81)points,PANSS negative syndrome scores were(-6.80±5.98)and(-7.30±5.15)points,with no significant difference(P>0.05).There was no significant difference in the incidence of treatment-related adverse events between the two group(69.00%vs.64.50%,P>0.05).Conclusion The non-inferiority of Brexpiprazole to aripiprazole was established,with comparable efficacy and acceptability.
4.Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway
Hye-Rin NOH ; Guoyan SUI ; Jin Woo LEE ; Feng WANG ; Jeong-Su PARK ; Yuanqiang MA ; Hwan MA ; Ji-Won JEONG ; Dong-Su SHIN ; Xuefeng WU ; Bang-Yeon HWANG ; Yoon Seok ROH
Biomolecules & Therapeutics 2024;32(6):793-800
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
5.Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway
Hye-Rin NOH ; Guoyan SUI ; Jin Woo LEE ; Feng WANG ; Jeong-Su PARK ; Yuanqiang MA ; Hwan MA ; Ji-Won JEONG ; Dong-Su SHIN ; Xuefeng WU ; Bang-Yeon HWANG ; Yoon Seok ROH
Biomolecules & Therapeutics 2024;32(6):793-800
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
6.Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway
Hye-Rin NOH ; Guoyan SUI ; Jin Woo LEE ; Feng WANG ; Jeong-Su PARK ; Yuanqiang MA ; Hwan MA ; Ji-Won JEONG ; Dong-Su SHIN ; Xuefeng WU ; Bang-Yeon HWANG ; Yoon Seok ROH
Biomolecules & Therapeutics 2024;32(6):793-800
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
7.Cardiac fibroblast-specific expression of IL-37 confers the protective effects on fibrosis in diabetic cardiomyopathy mice by regulating SOCS3-STAT3 axis.
Qing-Yu HUANG ; Jian LI ; Tong-Qing CHEN ; Yi-Ming WANG ; Xiao-Yan SHEN ; Hai-Ming SHI ; Xin-Ping LUO ; Bo JIN ; Yan YOU ; Bang-Wei WU
Journal of Geriatric Cardiology 2024;21(11):1060-1070
BACKGROUND:
Human interleukin (IL)-37 is a constituent of the IL-1 family with potent anti-inflammatory and immunosuppressive attributes. It has been demonstrated extensive beneficial effects on various diseases; however, its role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear.
METHODS:
In vivo, DCM mouse model was established with streptozotocin injection and a high-fat diet in WT and cardiac fibroblasts (CFs) specific hIL-37b overexpression mice (IL-37-Tg). In vitro, primary mouse CFs were isolated from the hearts of adult mice and cultured with high levels of glucose and palmitic acid. Cardiac function of the mice was assessed using echocardiography. Masson staining, immunofluorescence, western blot and RT-PCR assays were employed to evaluate the expression of cardiac fibrosis and SOCS3-JAK2-STAT3 signaling pathway-related proteins.
RESULTS:
In this study, we found that CFs specific IL-37-Tg significantly ameliorated cardiac dysfunction and reduced collagen production by inhibiting the JAK2-STAT3 axis, as evidenced by the decreased levels of p-JAK2 and p-STAT3 in the heart of CFs specific IL-37-Tg DCM mice. The beneficial effects of IL-37 were consistently observed in CFs treated with high glucose (HG) and palmitic acid (PA). Moreover, we also discovered that the presence of IL-37 increased the expression of SOCS3, a crucial regulator of JAK/STAT signaling, in DCM mice and HG and PA-treated CFs. Finally, the anti-fibrotic action of IL-37 in HG and PA-treated CFs was abolished when either SOCS3 was genetically knocked down or JAK2/STAT3 was pharmacologically activated.
CONCLUSIONS
Our findings indicate that IL-37 exerts its antifibrotic effect by promoting SOCS3-mediated JAK2-STAT3 inactivation and may be considered as a potential therapeutic agent for DCM.
8.Effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on proteomics and autophagy in mice with type 2 diabetes mellitus induced by high-fat diet coupled with streptozotocin.
Jing-Ning YAN ; Xiao-Qin LIU ; Xiang-Long MENG ; Ke-le REN ; Xue-Min WU ; Hao ZHANG ; Hai-Qin WANG ; Hong-Liang WANG ; Qi SHENG ; Bin LI ; Ding-Bang ZHANG ; Hong-Zhou CHEN ; Fa-Yun ZHANG ; Ming-Hao LI ; Shuo-Sheng ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1535-1545
To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.
Mice
;
Animals
;
Diabetes Mellitus, Type 2/genetics*
;
Streptozocin/pharmacology*
;
Diet, High-Fat/adverse effects*
;
Proteomics
;
Inflammation
;
TOR Serine-Threonine Kinases
;
Autophagy
;
Mammals
9.Analysis of mechanisms of Shenhuang Granule in treating severe COVID-19 based on network pharmacology and molecular docking.
Xiang-Ru XU ; Wen ZHANG ; Xin-Xin WU ; Hong-Qiang YANG ; Yu-Ting SUN ; Yu-Ting PU ; Bei WANG ; Wei PENG ; Li-Hua SUN ; Quan GUO ; Shuang ZHOU ; Bang-Jiang FANG
Journal of Integrative Medicine 2022;20(6):561-574
OBJECTIVE:
Severe cases of coronavirus disease 2019 (COVID-19) are expected to have a worse prognosis than mild cases. Shenhuang Granule (SHG) has been shown to be a safe and effective treatment for severe COVID-19 in a previous randomized clinical trial, but the active chemical constituents and underlying mechanisms of action remain unknown. The goal of this study is to explore the chemical basis and mechanisms of SHG in the treatment of severe COVID-19, using network pharmacology.
METHODS:
Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was employed to screen chemical constituents of SHG. Putative therapeutic targets were predicted by searching traditional Chinese medicine system pharmacology database and analysis platform, SwissTargetPrediction, and Gene Expression Omnibus (GEO) databases. The target protein-protein interaction network and enrichment analysis were performed to investigate the hub genes and presumptive mechanisms. Molecular docking and molecular dynamics simulations were used to verify the stability and interaction between the key chemical constituents of SHG and COVID-19 protein targets.
RESULTS:
Forty-five chemical constituents of SHG were identified along with 131 corresponding therapeutic targets, including hub genes such as HSP90AA1, MMP9, CXCL8, PTGS2, IFNG, DNMT1, TYMS, MDM2, HDAC3 and ABCB1. Functional enrichment analysis indicated that SHG mainly acted on the neuroactive ligand-receptor interaction, calcium signaling pathway and cAMP signaling pathway. Molecular docking showed that the key constituents had a good affinity with the severe acute respiratory syndrome coronavirus 2 protein targets. Molecular dynamics simulations indicated that ginsenoside Rg4 formed a stable protein-ligand complex with helicase.
CONCLUSION
Multiple components of SHG regulated multiple targets to inhibit virus invasion and cytokine storm through several signaling pathways; this provides a scientific basis for clinical applications and further experiments.
Humans
;
Molecular Docking Simulation
;
Ligands
;
Network Pharmacology
;
Drugs, Chinese Herbal/chemistry*
;
Medicine, Chinese Traditional
;
COVID-19 Drug Treatment
10.Current prevalence and influencing factors of chronic diseases among adult residents in Hunan Province
Tiantian WU ; E ZHU ; Jianying YU ; Dongxin WANG ; Bang' ; an LUO ; Min WANG
Journal of Preventive Medicine 2022;34(11):1145-1149
Objective:
To investigate the prevalence and influencing factors of chronic diseases among adult residents in Hunan Province, so as to provide insights into management of chronic diseases.
Methods:
Permanent residents at ages of 18 years and older were sampled using a multi-stage random sampling method in Hunan Province from April to June, 2021, and participants' demographics, smoking, alcohol consumption, sleep quality and development of chronic diseases were collected using questionnaire surveys. The prevalence of chronic diseases was estimated and standardized by the seventh national population census data. In addition, the factors affecting the prevalence of chronic diseases were identified using a multivariable logistic regression model.
Results:
A total of qualified 9 469 adult residents were enrolled, including 4 678 men (49.40%) and 4 791 women (50.60%), with a mean age of (59.37±14.14) years. The overall prevalence and standardized prevalence rates of chronic diseases were 50.84% and 38.44%, respectively, and the prevalence and standardized prevalence rates of hypertension, protrusion of intervertebral disc and diabetes were 18.66% and 15.06%, 6.31% and 5.28%, and 4.44% and 4.18%, respectively. Multivariable logistic regression analysis revealed that women (OR=1.252, 95%CI: 1.131-1.386), age (45 years-, OR=3.699, 95%CI: 3.104-4.407; 60 years and older, OR=9.255, 95%CI: 7.743-11.064), unmarried/divorced/widowed (OR=1.170, 95%CI: 1.036-1.321), educational level (junior high school, OR=0.730, 95%CI: 0.653-0.816; high school/technical secondary school, OR=0.710, 95%CI: 0.609-0.827; diploma and above, OR=0.586, 95%CI: 0.454-0.758), monthly household income (3 000 yuan-, OR=0.846, 95%CI: 0.759-0.943; 6 000 yuan-, OR=0.819, 95%CI: 0.710-0.943; 10 000 yuan and higher, OR=0.790, 95%CI: 0.657-0.950), smoking (OR=1.528, 95%CI: 1.363-1.713), insomnia (OR=2.637, 95%CI: 2.271-3.063) statistically correlated with the development of chronic diseases.
Conclusion
The prevalence of chronic diseases was 50.84% among adult residents in Hunan Province in 2021, and hypertension was the predominant chronic disease. Women, the middle-aged and elderly residents, residents with a low educational level and residents with low incomes are at a high risk of developing chronic diseases.


Result Analysis
Print
Save
E-mail