1.Circulating immunological transcriptomic profile identifies DDX3Y and USP9Y on the Y chromosome as promising biomarkers for predicting response to programmed death 1/programmed death ligand 1 blockade.
Liting YOU ; Zhaodan XIN ; Feifei NA ; Min CHEN ; Yang WEN ; Jin LI ; Jiajia SONG ; Ling BAI ; Jianzhao ZHAI ; Xiaohan ZHOU ; Binwu YING ; Juan ZHOU
Chinese Medical Journal 2025;138(3):364-366
2.Expert consensus on orthodontic treatment of protrusive facial deformities.
Jie PAN ; Yun LU ; Anqi LIU ; Xuedong WANG ; Yu WANG ; Shiqiang GONG ; Bing FANG ; Hong HE ; Yuxing BAI ; Lin WANG ; Zuolin JIN ; Weiran LI ; Lili CHEN ; Min HU ; Jinlin SONG ; Yang CAO ; Jun WANG ; Jin FANG ; Jiejun SHI ; Yuxia HOU ; Xudong WANG ; Jing MAO ; Chenchen ZHOU ; Yan LIU ; Yuehua LIU
International Journal of Oral Science 2025;17(1):5-5
Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.
Humans
;
Orthodontics, Corrective/methods*
;
Consensus
;
Malocclusion/therapy*
;
Patient Care Planning
;
Cephalometry
3.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
4.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
5.Activation of Nrf2/HO-1/NQO1 Signaling Pathway by Shenqi Tangluo Pill Improves Oxidative Stress Injury of Skeletal Muscle of Type 2 Diabetes Mellitus Mice
Xiaoli PEI ; Yonglin LIANG ; ⁎ ; Yongqiang DUAN ; ⁎ ; Xiangdong ZHU ; Bing SONG ; Min BAI ; Yunhui ZHAO ; Sichen ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):131-139
ObjectiveTo investigate the effect and mechanism of Shenqi Tangluo pill (SQTLP) on oxidative stress injury of skeletal muscle of type 2 diabetes mellitus (T2DM) mice based on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) pathway. MethodA total of 60 7-week-old male db/db mice [specific pathogen-free (SPF) grade] were selected and fed for one week for adaption. They were divided into the model control group, SQTLP low-, medium- and high-dose (19, 38, and 76 g·kg-1) groups and metformin group (0.26 g·kg-1) by gavage. Each group consisted of 12 mice. Twelve male db/m mice of the same age were selected as the blank group. The intervention was implemented continuously for 8 weeks. Fasting blood glucose (FBG) was detected. Fasting serum insulin (FINS) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment-insulin resistance (HOMA-IR) index and the homeostasis model assessment-insulin sensitivity index (HOMA-ISI) were calculated. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the contents of malondialdehyde (MDA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in skeletal muscle tissues were detected by biochemical kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in skeletal muscle tissues. The levels of reactive oxygen species (ROS) and 4-hydroxynonenal (4-HNE) in skeletal muscle tissue were detected by immunofluorescence (IF). The expression levels of Nrf2, HO-1, NQO1 and glutamate-cysteine ligase catalytic subunit (GCLC) proteins in skeletal muscle tissues were detected by Western blot. ResultCompared with those in the blank group, FBG, FINS and HOMA-IR in the model group were significantly increased (P<0.05), while HOMA-ISI was decreased (P<0.05). The results of OGTT and ITT showed that blood glucose was significantly increased at all time points (P<0.05), and glucose tolerance and insulin tolerance were significantly impaired. SOD and GSH-Px activities in skeletal muscle tissues were significantly decreased (P<0.05), and MDA and NADPH contents were significantly increased (P<0.05). In skeletal muscle tissues, the arrangement of muscle fibers was loose, the nucleus was disordered, and inflammatory cells were infiltrated. The expression levels of ROS and 4-HNE in skeletal muscle tissues were significantly increased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly decreased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the metformin group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that blood glucose in the metformin group was significantly decreased at all time points (P<0.05). The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue of the metformin group. The expressions of ROS and 4-HNE in skeletal muscle tissues were decreased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly increased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the SQTLP medium- and high-dose groups were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the glucose tolerance and insulin tolerance of mice were improved in each dose group of SQTLP. The GSH-Px activity in the SQTLP low-dose group was significantly increased (P<0.05), and the NADPH content was decreased (P<0.05). The activities of SOD and GSH-Px in the SQTLP medium- and high-dose groups were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). The skeletal muscle tissue injury of mice in each dose group of SQTLP was ameliorated to different degrees. In the SQTLP medium- and high-dose groups, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05). Compared with those in the SQTLP low-dose group, FBG and HOMA-IR in the SQTLP high-dose group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the SQTLP high-dose group significantly improved the glucose tolerance and insulin tolerance of mice. The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05) in the skeletal muscle tissue of the SQTLP high-dose group. ConclusionSQTLP can significantly improve IR in T2DM mice, and the mechanism is related to SQTLP activating the Nrf2/HO-1/NQO1 signaling pathway, promoting the expression of antioxidant enzymes, and thus improving the oxidative stress injury in the skeletal muscle.
6.Mechanism of Rhei Radix et Rhizoma-Coptidis Rhizoma Improving Liver Insulin Resistance in db/db Mice by Regulating AMPK/ULK1/Beclin1 Pathway
Hongzhang ZHAO ; Min BAI ; Zhandong WANG ; Bing SONG ; Chao GUO ; Xinhong LIU ; Qiong WANG ; Runze YANG ; Yongfeng WANG ; Yanying ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):9-16
ObjectiveThis study aims to examine the effect of Rhei Radix et Rhizoma-Coptidis Rhizoma on reducing insulin resistance in db/db mice by regulating the adenylate activated protein kinase (AMPK)/UNC-51-like kinase 1 (ULK1)/key molecule of autophagy, benzyl chloride 1 (Beclin1) pathway and elucidate the underlying mechanism. MethodSixty 6-week-old male db/db mice were studied. They were randomly divided into the model group, metformin group (0.26 g·kg-1), and low-, middle-, and high-dose groups (2.25, 4.5, 9 g·kg-1) of Rhei Radix et Rhizoma-Coptidis Rhizoma. A blank group of db/m mice of the same age was set, with 12 mice in each group. After eight weeks of continuous intragastric administration, the blank group and model group received distilled water intragastrically once a day. The survival status of the mice was observed, and fasting blood glucose (FBG) was measured using a Roche blood glucose device. Fasting serum insulin (FINS) was measured using an enzyme-linked immunosorbent assay, and the insulin resistance index (HOMA-IR) was calculated. Hematoxylin-eosin (HE) staining was performed to observe the pathological changes in the liver of the mice. The protein expression levels of AMPK, Beclin1, autophagy associated protein 5 (Atg5), and p62 in liver tissue were determined by using Western blot. The protein expression levels of autophagy associated protein 1 light chain 3B (LC3B) and ULK1 in liver tissue were determined using immunofluorescence. Real-time fluorescence quantitative PCR (Real-time PCR) was used to measure mRNA expression levels of AMPK, Beclin1, Atg5, ULK1, and p62. ResultCompared with the blank group, the model group exhibited a significant increase in body mass (P<0.01). Additionally, the levels of FBG, FINS, and HOMA-IR significantly changed (P<0.01). The structure of liver cells was disordered. The protein expression levels of AMPK, Beclin1, and Atg5 in liver tissue were significantly decreased (P<0.01), while the expression level of p62 protein was significantly increased (P<0.01). The expression levels of mRNA and proteins were consistent. Compared with the model group, the body mass of the metformin group and high and medium-dose groups of Rhei Radix et Rhizoma-Coptidis Rhizoma was significantly decreased (P<0.05). FBG, FINS, and HOMA-IR were significantly decreased (P<0.05,P<0.01). After treatment, the liver structure damage in each group was alleviated to varying degrees. The protein expressions of AMPK, Beclin1, Atg5, LC3B, and ULK1 were increased (P<0.05,P<0.01), while the protein expression of p62 was decreased (P<0.01). The expression levels of mRNA and proteins were generally consistent. ConclusionThe combination of Rhei Radix et Rhizoma-Coptidis Rhizoma can effectively improve liver insulin resistance, regulate the AMPK autophagy signaling pathway, alleviate insulin resistance in db/db mice, and effectively prevent the occurrence and development of type 2 diabetes.
7.To Explore the Mechanism of Huayu Xiaopi Decoction in the Intervention of Precancerous Lesions of Gastric Cancer Based on Network Pharmacology and Molecular Docking Technique and in vivo Experiment
Ziyou LIU ; Yongqiang DUAN ; Yaorong AN ; Yanying ZHANG ; Bing SONG ; Min BAI ; Xiaomei YUAN ; Yue PENG ; Mengyong XIAO ; Weiqiang LI
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(4):1092-1103
Objective To predict the target and molecular mechanism of Huayu Xiaopi decoction in the intervention of Precancerous lesions of gastric cancer(PLGC)based on network pharmacology and molecular docking technology,and to conduct experimental verification.Methods A total of 60 SPF SD male rats were randomly selected as blank control,and the other rats were replicated in PLGC model.After successful modeling,the rats were randomly divided into model group,folic acid group(2 mg·kg-1·d-1),Huayu Xiaopi decoction high,medium and low dose groups(24.8,12.4,6.2 g·kg-1·d-1),which were continuously administered for 90 days.The body mass and food intake of rats at 3 h were recorded,and the gastric histopathology was observed by HE staining.Network pharmacology and molecular docking techniques were used to predict the potential targets of Huayu Xiaopi decoction in PLGC intervention,and the core targets were verified by Western blot technique.Results Compared with the blank group,the body mass and 3 h food intake of rats in the model group were significantly decreased(P<0.05),the gastric mucosa of rats was significantly thinner,the glands were significantly reduced and disordered,and the intestinal metaplasia goblet cells and a large number of inflammatory cells were visible in some areas.Compared with the model group,the body mass and 3 h food intake of rats in each administration group were improved to varying degrees.Huayu Xiaopi Decoction improved significantly in medium and high doses(P<0.05),the gastric mucosa was repaired in different degrees,the glandular arrangement tended to be orderly,and the inflammatory cells in the interstitial were gradually reduced.The results of network pharmacology and molecular docking showed that TP53,JUN and MAPK3/1(ERK1/2)were the core targets of Huayu Xiaopi decoction in the intervention of PLGC.Molecular biological detection results showed that compared with blank group,the protein phosphorylation levels of TP53,c-Jun and ERK1/2 in gastric tissue of model group were significantly increased(P<0.05).Compared with model group,the protein phosphorylation levels of TP53,c-Jun and ERK1/2 in gastric tissue of rats in all administration groups were decreased to different degrees,and significantly decreased in Huayu Xiaopi decoction high-dose and medium-dose groups(P<0.05).Conclusion Huayu Xiaopi Decoction can significantly improve the survival condition of PLGC rats and promote gastric mucosal repair,the specific mechanism of which may be related to the decrease of ERK1/2,c-Jun and TP53 protein phosphorylation levels in gastric tissue of PLGC rats,and then regulate the downstream signaling molecular response.
8.Zhenwutang Ameliorates Diabetic Kidney Disease in Mice with Spleen-kidney Yang Deficiency via Nrf2/HO-1/GPX4 Signaling Pathway
Zhe ZHAO ; Guangshun CHEN ; Min BAI ; Yuqiu JIN ; Mengyuan TIAN ; Bing SONG ; Zhenhua LIU ; Yanying ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):29-37
ObjectiveTo investigate the effect and mechanism of Zhenwutang on renal oxidative damage in the mouse model of diabetic kidney disease with the syndrome of spleen-kidney Yang deficiency via the nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodTwenty-five 7-week-old SPF-grade male db/m mice and 95 7-week-old SPF-grade male db/db mice were adaptively fed for a week. A blank group was set with the db/m mice without treatment, and the other mice were administrated with Rhei Radix et Rhizoma decoction and hydrocortisone for the modeling of diabetic kidney disease with the syndrome of spleen-kidney Yang deficiency. The modeled mice were randomized into the model, irbesartan (25 mg·kg-1), and high-, medium-, low-dose (33.8, 16.9, 8.45 g·kg-1) Zhenwutang groups (n=15) and administrated with corresponding drugs for 8 weeks. The survival status of mice was observed, and the traditional Chinese medicine (TCM) syndrome score was recorded. The indicators related to spleen-kidney Yang deficiency, fasting blood glucose (FBG), and renal function indicators were determined. Hematoxylin-eosin staining was employed to observe the histopathological changes of the renal tissue in each group. Biochemical kits were used to determine the oxidative stress-related indicators in the renal tissue. Real-time polymerase chain reaction and Western blotting were employed to determine the mRNA and protein levels, respectively, of Nrf2, HO-1, glutamate-cysteine ligase catalytic subunit (GCLC), and GPX4 in the renal tissue of mice in each group. ResultCompared with the blank group, the modeling increased the TCM syndrome score (P<0.05), elevated the estradiol (E2) and FBG levels (P<0.05), lowered the testosterone (T), triiodothyronine (T3), and tetraiodothyronine (T4) levels (P<0.05), and weakened the renal function (P<0.05). In addition, the modeling led to glomerular hypertrophy and glomerular mesangial and basal thickening, decreased the catalase (CAT) activity, total antioxidant capacity (T-AOC), and glutathione (GSH) content (P<0.05), increased the malondialdehyde (MDA) content (P<0.05), and down-regulated the mRNA and protein levels of Nrf2, HO-1, GCLC, and GPX4 in the renal tissue (P<0.05). Compared with the model group, high and medium doses of Zhenwutang decreased the TCM syndrome score and E2 content (P<0.05), increased the T, T3, and T4 content (P<0.05), improved the renal function (P<0.05), alleviated the pathological changes in the renal tissue, increased CAT, T-AOC, and GSH (P<0.05), reduced MDA (P<0.05), and up-regulated the mRNA and protein levels of Nrf2, HO-1, GCLC, and GPX4 in the renal tissue (P<0.05). ConclusionZhenwutang can improve the general state and renal function and reduce the oxidative damage and pathological changes in the renal tissue of db/db mice with spleen-kidney Yang deficiency by regulating the Nrf2/HO-1/GPX4 signaling pathway.
9.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
10.Research progress on mechanism of necrotizing apoptosis in pancreatic disease
Runze YANG ; Jing QIN ; Chenbo GUO ; Yaohua HU ; Zhandong WANG ; Yanying ZHANG ; Bing SONG ; Min BAI ; Changhong SHI ; Yongfeng WANG
Acta Laboratorium Animalis Scientia Sinica 2024;32(7):933-941
Necroptosis is a regulated process of programmed cell death independent of aspartic acid-specific cysteine protease,which can induce inflammation.Studies have shown that necroptosis is closely related to the progression and prognosis of pancreatic disease and plays an important two-way regulatory role in its progression.Related necroptosis inhibitors and inducers are expected to be used in the treatment of pancreatic disease.We herein review the mechanism of necroptosis and its role in the progression of pancreatic disease to provide a new understanding of the pathogenesis and treatment of pancreatic diseases and offer a theoretical basis for the research and development of targeted drugs.

Result Analysis
Print
Save
E-mail