1.Methyl-CpG Binding Protein 2 in Alzheimer Dementia
Baeksun KIM ; Yunjung CHOI ; Hye Sun KIM ; Heh In IM
International Neurourology Journal 2019;23(Suppl 2):S72-S81
Despite decades of research on Alzheimer disease, understanding the complexity of the genetic and molecular interactions involved in its pathogenesis remains far from our grasp. Methyl-CpG Binding Protein 2 (MeCP2) is an important epigenetic regulator enriched in the brain, and recent findings have implicated MeCP2 as a crucial player in Alzheimer disease. Here, we provide comprehensive insights into the pathophysiological roles of MeCP2 in Alzheimer disease. In particular, we focus on how the alteration of MeCP2 expression can impact Alzheimer disease through risk genes, amyloid-β and tau pathology, cell death and neurodegeneration, and cellular senescence. We suggest that Alzheimer disease can be adversely affected by upregulated MeCP2-dependent repression of risk genes (MEF2C, ADAM10, and PM20D1), increased tau accumulation, and neurodegeneration through neuronal cell death (excitotoxicity and apoptosis). In addition, we propose that the progression of Alzheimer disease could be caused by reduced MeCP2-mediated enhancement of astrocytic and microglial senescence and consequent glial SASP (senescence-associated secretory phenotype)-dependent neuroinflammation. We surmise that any imbalance in MeCP2 function would accelerate or cause Alzheimer disease pathogenesis, implying that MeCP2 may be a potential drug target for the treatment and prevention of Alzheimer disease.
2.SYNCRIP controls miR-137 and striatal learning in animal models of methamphetamine abstinence.
Baeksun KIM ; Sung Hyun TAG ; Eunjoo NAM ; Suji HAM ; Sujin AHN ; Juhwan KIM ; Doo-Wan CHO ; Sangjoon LEE ; Young-Su YANG ; Seung Eun LEE ; Yong Sik KIM ; Il-Joo CHO ; Kwang Pyo KIM ; Su-Cheol HAN ; Heh-In IM
Acta Pharmaceutica Sinica B 2022;12(8):3281-3297
Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome. Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine (MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR, LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.