1.Expression and characterization of ArgR, an arginine regulatory protein in Corynebacterium crenatum.
Xue Lan CHEN ; Bin ZHANG ; Li TANG ; Hai Tao JIAO ; Heng Yi XU ; Feng XU ; Hong XU ; Hua WEI ; Yong Hua XIONG
Biomedical and Environmental Sciences 2014;27(6):436-443
OBJECTIVECorynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain.
METHODSQuantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer.
RESULTSArginine production assays showed a 69.9% reduction in arginine from 9.01 ± 0.22 mg/mL in C. crenatum MT to 2.71 ± 0.13 mg/mL (P<0.05) in C. crenatum MT. sp. The argC, argB, argD, argF, argJ, argG, and carA genes were down-regulated significantly in C. crenatum MT. sp compared with those in its parental C. crenatum MT strain. The electrophoretic mobility shift assays showed that the promoter regions were directly bound to the ArgR protein.
CONCLUSIONThe arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in arginine production.
Arginine ; biosynthesis ; Bacterial Proteins ; chemistry ; genetics ; metabolism ; Corynebacterium ; genetics ; metabolism ; Gene Expression Regulation, Bacterial ; Repressor Proteins ; chemistry ; genetics ; metabolism
2.Structural insights into glutathione-mediated activation of the master regulator PrfA in Listeria monocytogenes.
Yong WANG ; Han FENG ; Yalan ZHU ; Pu GAO
Protein & Cell 2017;8(4):308-312
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
DNA, Bacterial
;
chemistry
;
genetics
;
metabolism
;
Gene Expression Regulation, Bacterial
;
physiology
;
Glutathione
;
metabolism
;
Listeria monocytogenes
;
chemistry
;
genetics
;
metabolism
;
Peptide Termination Factors
;
chemistry
;
genetics
;
metabolism
3.Mutation of the critical pH-gating residues histidine 231 to glutamate increase open probability of outer membrane protein G in planar lipid bilayer.
Mu YU ; Peibei SUN ; Yao HE ; Liang XIAO ; Demeng SUN ; Longhua ZHANG ; Changlin TIAN
Protein & Cell 2013;4(11):803-806
Bacterial Outer Membrane Proteins
;
chemistry
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
chemistry
;
genetics
;
metabolism
;
Glutamic Acid
;
genetics
;
metabolism
;
Histidine
;
genetics
;
Hydrogen-Ion Concentration
;
Ion Channel Gating
;
genetics
;
Lipid Bilayers
;
metabolism
;
Mutant Proteins
;
chemistry
;
genetics
;
metabolism
;
Mutation
;
Porins
;
chemistry
;
genetics
;
metabolism
4.Expression and characterization of a novel halohydrin dehalogenase from Tistrella mobilis KA081020-065.
Lei WANG ; Jing YUAN ; Peiyuan YAO ; Lihua CHENG ; Meixian XIE ; Rongrong JIA ; Huijin FENG ; Min WANG ; Qiaqing WU ; Dunming ZHU
Chinese Journal of Biotechnology 2015;31(5):659-669
Halohydrin dehalogenase is of great significance for biodegradation of the chlorinated pollutants, and also serves as an important biocatalyst in the synthesis of chiral pharmaceutical intermediates. A putative halohydrin dehalogenase (HheTM) gene from Tistrella mobilis KA081020-065 was cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified by Ni-NTA column and characterized. Gel filtration and SDS-PAGE analysis showed that the native form of HheTM was a tetramer. It exhibited the highest activity at 50 degrees C. The nature and pH of the buffer had a great effect on its activity. The enzyme maintained high stability under the alkaline conditions and below 30 degrees C. HheTM catalyzed the transformation of ethyl(S)-4-chloro-3-hydroxybutyrate in the presence of cyanide, to give ethyl (R)-4-cyano-3-hydroxybutyrate, a key intermediate for the synthesis of atorvastatin.
3-Hydroxybutyric Acid
;
chemistry
;
Bacterial Proteins
;
genetics
;
metabolism
;
Cloning, Molecular
;
Escherichia coli
;
Hydrolases
;
genetics
;
metabolism
;
Hydroxybutyrates
;
chemistry
;
Recombinant Proteins
;
genetics
;
metabolism
;
Rhodospirillaceae
;
enzymology
;
genetics
5.Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902-109 and Streptomyces hygroscopicus ATCC29253.
He HUANG ; Shuang-Xi REN ; Sheng YANG ; Hai-Feng HU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(2):90-98
The present study was designed to identify the difference between two rapamycin biosynthetic gene clusters from Streptomyces hygroscopicus ATCC29253 and Actinoplanes sp. N902-109 by comparing the sequence and organization of the gene clusters. The biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus ATCC29253 was reported in 1995. The second rapamycin producer, Actinoplanes sp. N902-109, which was isolated in 1995, could produce more rapamycin than Streptomyces hygroscopicus ATCC29253. The genomic map of Actinoplanes sp. N902-109 has been elucidated in our laboratory. Two gene clusters were compared using the online software anti-SMASH, Glimmer 3.02 and Subsystem Technology (RAST). Comparative analysis revealed that the organization of the multifunctional polyketide synthases (PKS) genes: RapA, RapB, RapC, and NRPS-like RapP were identical in the two clusters. The genes responsible for precursor synthesis and macrolactone modification flanked the PKS core region in N902-109, while the homologs of those genes located downstream of the PKS core region in ATCC29253. Besides, no homolog of the gene encoding a putative type II thioesterase that may serve as a PKS "editing" enzyme accounted for over-production of rapamycin in N902-109, was found in ATCC29253. Furthermore, no homologs of genes rapQ (encoding a methyltransferase) and rapG in N902-109 were found in ATCC29253, however, an extra rapM gene encoding methyltransferase was discovered in ATCC29253. Two rapamycin biosynthetic gene clusters displayed overall high homology as well as some differences in gene organization and functions.
Amino Acid Sequence
;
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
Biosynthetic Pathways
;
Micromonosporaceae
;
chemistry
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Multigene Family
;
Sequence Alignment
;
Sirolimus
;
metabolism
;
Streptomyces
;
chemistry
;
genetics
;
metabolism
6.Gluconate 5-dehydrogenase (Ga5DH) participates in Streptococcus suis cell division.
Zhongyu SHI ; Chunling XUAN ; Huiming HAN ; Xia CHENG ; Jundong WANG ; Youjun FENG ; Swaminath SRINIVAS ; Guangwen LU ; George F GAO
Protein & Cell 2014;5(10):761-769
Bacterial cell division is strictly regulated in the formation of equal daughter cells. This process is governed by a series of spatial and temporal regulators, and several new factors of interest to the field have recently been identified. Here, we report the requirement of gluconate 5-dehydrogenase (Ga5DH) in cell division of the zoonotic pathogen Streptococcus suis. Ga5DH catalyzes the reversible reduction of 5-ketogluconate to D-gluconate and was localized to the site of cell division. The deletion of Ga5DH in S. suis resulted in a plump morphology with aberrant septa joining the progeny. A significant increase was also observed in cell length. These defects were determined to be the consequence of Ga5DH deprivation in S. suis causing FtsZ delocalization. In addition, the interaction of FtsZ with Ga5DH in vitro was confirmed by protein interaction assays. These results indicate that Ga5DH may function to prevent the formation of ectopic Z rings during S. suis cell division.
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
Cell Division
;
Cell Shape
;
Cytoskeletal Proteins
;
chemistry
;
genetics
;
metabolism
;
Mutation
;
Oxidoreductases
;
deficiency
;
genetics
;
metabolism
;
Protein Binding
;
Streptococcus suis
;
enzymology
7.Study on the reconstitution in vitro and photochemical activities of phytochrome from the Synechocystis sp. PCC6803.
Yi-Ran DONG ; Yong RAN ; Kai-Hong ZHAO ; Ming ZHOU
Chinese Journal of Biotechnology 2004;20(2):238-244
Genomic DNA sequence analysis of phytochrome like photoreceptors in a number of bacteria revealed several open reading frames (ORFs) encoding proteins with amino acid sequences homologous to plant phytochromes. The phytochrome like photoreceptors, collectively called bacteriophytochromes, contain an N-terminal domain homologous to the chromophore-binding domain (CBD) of higher plants and a C-terminal domain of histidine kinase domain( HKD). Due to their simple structure, bacteriophytochromes broaden the view of phytochrome evolution and provide us with a simple model to investigate phytochrome-mediated light signal in higher plants. In this report, the bacteriophytochromes from Synechocystis sp. PCC6803 were investigated. The gene cph1 and its fragment cph1 (C-435) were isolated from the Synechocystis sp. PCC6803 genomic DNA by polymerase chain reaction(PCR) using specific primers. Then, the genes were cloned with the vector pBluescript, yielding plasmids pBlu-cphl and pBlu-cph1 ( C-435), before they are subcloned with the vector pET30, using the EcoRV and Xho I restriction sites. pBlu-cph1, pBlu-cph1 (N-435) were cleaved with Sma I and Xho I, and the released genes were ligated to the pET30a fragment. The E. coli [strain BL21 (DE3)] cells containing recombinant pET30a were grown in medium RB at 20 degrees C, and harvested 6 h later after induction with isopropyl thio-beta-D-galactoside (IPTG). Then, reconstitution systems were employed to study the characteristics of the genes. In the reconstitution system, autoassembly of aprotein of phytochrome with PCB was investigated. The chromophore addition was an autocatalytic process. Reconstitution products were red/infrared (R/FR) photochromic, which was similar to that of the phytoehrome in higher plants. How ever, the spectral change ratios (deltaAmax/deltaAmin) of the two fragments differed from each other. It was also shown that PCB was covalently bound to apo-protein via Zn2+ fluoresc ence SDS-PAGE. After irradiation by light of 700 nm, the maximum absorption spectrum o f holo-Cphl was 650nm. The absorption of it after denaturatior in the dark with ur ea in the presence of hydrochloric acid (pH = 2) was 660nm, which was similar with th at of cis-PCB. In addition, after irradiation by light of 650nm, the maximum absorption spectrum of holo-Cph1 was 700nm. The absorption of it after denaturation in the dark with urea in the presence of hydrochloric acid (pH = 2) was 600nm, which was similar with that of trans-PCB. The result showed that the photochromism of phytochrome resulted from the isomerizaation of chromophore (PCB in this report). The reconstitution of Cph1 (C-435) under the same condition supported the conclusion. Fluorescence emission spectrum of the products suggested that bacteriophytochrom e structure with cis-PCB was more stable than that with trans-PCB. The new reconstitution system in this report sets a base for the application of phytochrome as photochromic biomaterials in biosensors. In addition, phytochrome shows great potential in food, cosmetic and biological engineering, etc.
Bacterial Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression Regulation, Bacterial
;
radiation effects
;
Genetic Vectors
;
Photochemistry
;
Phytochrome
;
biosynthesis
;
chemistry
;
genetics
;
Protein Kinases
;
biosynthesis
;
chemistry
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Synechocystis
;
chemistry
8.The PKS/NRPS hetero-gene cluster of epothilones.
Zhi-Feng LI ; Etienne NGUIMBI ; Yue-Zhong LI ; Wei-Feng LIU
Chinese Journal of Biotechnology 2003;19(5):511-515
Novel macrolides epothilones, produced by cellulolytic myxobacterium Sorangium cellulosum, have the activity to promote microtubule assembly, and are considered to be a potential successor to the famous antitumor drug taxol. The biosynthetic genes leading to the epothilones are clustered into a large operon. The multi-enzyme complex is a hetero-gene cluster of polyketide synthase (PKS) and non-ribosomal peptide synthetases (NRPS) and contains several functional modules, i.e. a loading module, one NRPS module, eight PKS modules, and a P450 epoxidase. The former ten modules biosynthesize desoxyepothilone (epothilones C and D), which is then epoxidized at C12 and C13 and converted into epothilones (epothilones A and B) by the P450 epoxidase. The NRPS module is responsible for the formation of the thiazole side chain from cysteine. The biosynthesis procedure of epothilones can be divided into 5 stages, i.e. formation of holo-ACP/PCP, chain initiation and thiazole ring formation, chain elongation, termination and epoxidation, and post-modification. The analysis of the gene cluster and the biosynthetic pathway reveals that novel epothilone analogs could not only be produced by chemical synthesis/modification, tranditional microbial technologies, but also can be genetically manipulated through combinatiorial biosynthesis approaches.
Bacterial Proteins
;
genetics
;
metabolism
;
Epothilones
;
chemistry
;
metabolism
;
Molecular Structure
;
Multigene Family
;
genetics
;
physiology
;
Myxococcales
;
enzymology
;
genetics
;
metabolism
;
Peptide Synthases
;
genetics
;
metabolism
;
Polyketide Synthases
;
genetics
;
metabolism
9.Construction of a mutant of Actinoplanes sp. N902-109 that produces a new rapamycin analog.
He HUANG ; Ping GAO ; Qi ZHAO ; Hai-Feng HU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):210-218
In the present study, we introduced point mutations into Ac_rapA which encodes a polyketide synthase responsible for rapamycin biosynthesis in Actinoplanes sp. N902-109, in order to construct a mutant with an inactivated enoylreductase (ER) domain, which was able to synthesize a new rapamycin analog. Based on the homologous recombination induced by double-strand breaks in chromosome mediated by endonuclease I-SceI, the site-directed mutation in the first ER domain of Ac_rapA was introduced using non-replicating plasmid pLYERIA combined with an I-SceI expression plasmid. Three amino acid residues of the active center, Ala-Gly-Gly, were converted to Ala-Ser-Pro. The broth of the mutant strain SIPI-027 was analyzed by HPLC and a new peak with the similar UV spectrum to that of rapamycin was found. The sample of the new peak was prepared by solvent extraction, column chromatography, and crystallization methods. The structure of new compound, named as SIPI-rapxin, was elucidated by determining and analyzing its MS and NMR spectra and its biological activity was assessed using mixed lymphocyte reaction (MLR). An ER domain-deficient mutant of Actinoplanes sp. N902-109, named as SIPI-027, was constructed, which produced a novel rapamycin analog SIPI-rapxin and its structure was elucidated to be 35, 36-didehydro-27-O-demethylrapamycin. The biological activity of SIPI-rapxin was better than that of rapamycin. In conclusion, inactivation of the first ER domain of rapA, one of the modular polyketide synthase responsible for macro-lactone synthesis of rapamycin, gave rise to a mutant capable of producing a novel rapamycin analog, 35, 36-didehydro-27-O-demethylrapamycin, demonstrating that the enoylreductase domain was responsible for the reduction of the double bond between C-35 and C-36 during rapamycin synthesis.
Anti-Bacterial Agents
;
chemistry
;
metabolism
;
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
Genetic Engineering
;
Micromonosporaceae
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Mutation
;
Polyketide Synthases
;
chemistry
;
genetics
;
metabolism
;
Protein Domains
;
Sirolimus
;
analogs & derivatives
;
metabolism
10.Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence.
Zhixiu YANG ; Qiang GUO ; Simon GOTO ; Yuling CHEN ; Ningning LI ; Kaige YAN ; Yixiao ZHANG ; Akira MUTO ; Haiteng DENG ; Hyouta HIMENO ; Jianlin LEI ; Ning GAO
Protein & Cell 2014;5(5):394-407
The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.
Cryoelectron Microscopy
;
Escherichia coli
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
GTP Phosphohydrolases
;
genetics
;
metabolism
;
Mass Spectrometry
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
;
RNA, Ribosomal
;
analysis
;
metabolism
;
Ribosomal Proteins
;
chemistry
;
genetics
;
metabolism
;
Ribosome Subunits, Small, Bacterial
;
chemistry
;
metabolism
;
ultrastructure
;
Salts
;
chemistry