1.Advances in the study of Mycobacterium tuberculosis protein phosphatase and its inhibitors.
Tie-Shan TENG ; Hong-Hai WANG ; Jian-Ping XIE
Acta Pharmaceutica Sinica 2011;46(12):1420-1428
Reversible protein phosphorylation regulates multiple biochemical events. Mycobacterium tuberculosis phosphatases play important roles in regulating the pathogen physiology and interference of host signaling. They are also involved in the evasion of host immune response and blockage of the phagosome-lysosome fusion. Selective inhibition of phosphatase represents an ideal new avenue of anti-tuberculosis drug design. In this paper, we update the progresses about the regulation network of Mycobacterium tuberculosis phosphatases including MptpA, MptpB, MstP, SapM and their inhibitors. These serve as the basis for further antituberculosis drug target.
Acid Phosphatase
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Antitubercular Agents
;
pharmacology
;
Bacterial Proteins
;
antagonists & inhibitors
;
metabolism
;
Humans
;
Mycobacterium tuberculosis
;
drug effects
;
enzymology
;
Protein Tyrosine Phosphatases
;
antagonists & inhibitors
;
metabolism
2.Regulatory genes of geldanamycin biosynthesis.
Weiqing HE ; Jian LEI ; Yuying LIU ; Yiguang WANG
Chinese Journal of Biotechnology 2008;24(5):717-722
Two LAL family regulatory genes, gdmRI and gdmRII, were identified in the geldanamycin biosynthetic gene cluster of Streptomyces hygroscopicus 17997. Disruption of the two regulatory genes resulted in absolute elimination of geldanamycin biosynthesis. The complementation experiments using a single wild-type gene could restore geldanamycin production. These results indicated that both gdmRI and gdmRII were positive regulatory genes of the geldanamycin biosynthesis.
Anti-Bacterial Agents
;
biosynthesis
;
Benzoquinones
;
metabolism
;
Gene Expression Regulation, Bacterial
;
HSP90 Heat-Shock Proteins
;
antagonists & inhibitors
;
Lactams, Macrocyclic
;
metabolism
;
Protein-Tyrosine Kinases
;
antagonists & inhibitors
;
Repressor Proteins
;
genetics
;
Streptomyces
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
3.Correlation of Ciprofloxacin Resistance with the AdeABC Efflux System in Acinetobacter baumannii Clinical Isolates.
Abdollah ARDEBILI ; Abdolaziz Rastegar LARI ; Malihe TALEBI
Annals of Laboratory Medicine 2014;34(6):433-438
BACKGROUND: Acinetobacter baumannii is one of the most important pathogens capable of colonization in burn patients, leading to drug-resistant wound infections. This study evaluated the distribution of the AdeABC efflux system genes and their relationship to ciprofloxacin resistance in A. baumannii isolates collected from burn patients. METHODS: A total of 68 A. baumannii clinical strains were isolated from patients hospitalized in Motahari Burns Center in Tehran, Iran. Ciprofloxacin susceptibility was tested by the disk diffusion and agar dilution methods. PCR amplification of the adeRS-adeB drug efflux genes was performed for all resistant and susceptible isolates. To assess the role of the drug efflux pump in ciprofloxacin susceptibility, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as an efflux pump inhibitor (EPI). RESULTS: Approximately 95.6% of the Acinetobacter isolates were resistant to ciprofloxacin, with minimum inhibitory concentration (MIC) values ranging from 4 to > or =128 microg/mL. The susceptibility of 86.1% of the resistant isolates increased by factors of 2 to 64 in the presence of CCCP. All resistant isolates were positive for the adeRS-adeB genes, and 73.2% of them had mutations in the AdeRS regulatory system. CONCLUSIONS: The results showed that AdeABC genes are common in A. baumannii, which might be associated with ciprofloxacin non-susceptibility, as indicated by the observed linkage to the presence of the genes essential for the activity of the AdeABC, several single mutations occurring in the adeRS regulatory system, and an increase of ciprofloxacin susceptibility in the presence of a CCCP EPI.
ATP-Binding Cassette Transporters/antagonists & inhibitors/genetics/*metabolism
;
Acinetobacter Infections/diagnosis/microbiology
;
Acinetobacter baumannii/*drug effects/genetics/isolation & purification
;
Anti-Bacterial Agents/*pharmacology
;
Bacterial Proteins/antagonists & inhibitors/genetics/*metabolism
;
Base Sequence
;
Ciprofloxacin/*pharmacology
;
DNA, Bacterial/chemistry/genetics/metabolism
;
Drug Resistance, Bacterial
;
Humans
;
Hydrazones/pharmacology
;
Microbial Sensitivity Tests
;
Mutation
;
Polymerase Chain Reaction
4.Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery.
Protein & Cell 2010;1(5):435-442
Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.
Bacterial Proteins
;
antagonists & inhibitors
;
chemistry
;
genetics
;
metabolism
;
Crystallography, X-Ray
;
Drug Discovery
;
Genomics
;
Models, Molecular
;
Molecular Targeted Therapy
;
Mycobacterium tuberculosis
;
drug effects
;
genetics
;
metabolism
;
Protein Conformation
5.Novel inhibitors against the bacterial signal peptidase I.
Guo-Jian LIAO ; Ying HE ; Jian-Ping XIE
Acta Pharmaceutica Sinica 2012;47(12):1561-1566
New antibiotics with novel modes of action and structures are urgently needed to combat the emergence of multidrug-resistant bacteria. Bacterial signal peptidase I (SPase I) is an indispensable enzyme responsible for cleaving the signal peptide of preprotein to release the matured proteins. Increasing evidence suggests that SPase I plays a crucial role in bacterial pathogenesis by regulating the excretion of a variety of virulent factors, maturation of quorum sensing factor and the intrinsic resistance against beta-lactams. Recently, breakthrough has been achieved in the understanding of three-dimensional structure of SPase I as well as the mechanism of enzyme-inhibitors interaction. Three families of inhibitors are identified, i.e. signal peptide derivatives, beta-lactams and arylomycins. In this article, we summarize the recent advance in the study of structure, activity and structure-activity relationship of SPase I inhibitors.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Bacteria
;
drug effects
;
Escherichia coli
;
drug effects
;
Membrane Proteins
;
antagonists & inhibitors
;
metabolism
;
Oligopeptides
;
chemistry
;
pharmacology
;
Serine Endopeptidases
;
metabolism
;
Serine Proteinase Inhibitors
;
chemistry
;
pharmacology
;
Structure-Activity Relationship
;
beta-Lactams
;
antagonists & inhibitors
6.The role of bacterial biofilm in persistent infections and control strategies.
International Journal of Oral Science 2011;3(2):66-73
Bacterial biofilms can be viewed as a specific type of persistent bacterial infection. After initial invasion, microbes can attach to living and non-living surfaces, such as prosthetics and indwelling medical devices, and form a biofilm composed of extracellular polysaccharides, proteins, and other components. In hosts, biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. The clinical aspects of biofilm formation and leading strategies for biofilm inhibitors will be discussed in this mini-review.
Adhesins, Bacterial
;
drug effects
;
physiology
;
Aminoacyltransferases
;
antagonists & inhibitors
;
genetics
;
Animals
;
Antimicrobial Cationic Peptides
;
genetics
;
pharmacology
;
Bacterial Infections
;
microbiology
;
surgery
;
Bacterial Proteins
;
antagonists & inhibitors
;
genetics
;
Biofilms
;
drug effects
;
growth & development
;
Chronic Disease
;
Cysteine Endopeptidases
;
genetics
;
Cysteine Proteinase Inhibitors
;
pharmacology
;
Humans
;
Inflammation
;
microbiology
;
Quorum Sensing
;
drug effects
;
physiology
;
Wound Infection
;
microbiology
;
surgery
7.Advances in the study of the microbial efflux pumps and its inhibitors development.
Quan-Xin LONG ; Pei-Fu ZHOU ; Zong-Hui WU ; Hong-Hai WANG ; Jian-Ping XIE
Acta Pharmaceutica Sinica 2008;43(11):1082-1088
Drug resistant bacteria is an increasingly urgent challenge to public health. Bacteria adaptation and extensive abuse of antibiotics contribute to this dilemma. Active efflux of antibiotics is employed by the bacteria to survive the antibiotic pressure. Efflux pump is one of the hot spots of current drug related studies and ideal targets for the improvement of treatment. The efflux pumps and related mechanisms of action, regulation of expression and methodologies were summarized. Comparative genomics analyses were employed to elucidate the underlying mechanisms of action and evolution of efflux pump as exemplified by the Mycobacterium in our lab, which is a crucial re-emerging threat to global public health. The pathway and state-of-art drug development of efflux pump related drugs are included too.
ATP-Binding Cassette Transporters
;
antagonists & inhibitors
;
drug effects
;
physiology
;
Anti-Bacterial Agents
;
metabolism
;
pharmacology
;
Bacteria
;
metabolism
;
Drug Resistance, Multiple, Bacterial
;
drug effects
;
genetics
;
Ion Pumps
;
antagonists & inhibitors
;
drug effects
;
physiology
;
Membrane Transport Proteins
;
drug effects
;
physiology
;
Multidrug Resistance-Associated Proteins
;
drug effects
;
physiology
;
Mycobacterium
;
metabolism
8.Isolation of a Klebsiella pneumoniae Isolate of Sequence Type 258 Producing KPC-2 Carbapenemase in Korea.
Kyoung Ho ROH ; Chang Kyu LEE ; Jang Wook SOHN ; Wonkeun SONG ; Dongeun YONG ; Kyungwon LEE
The Korean Journal of Laboratory Medicine 2011;31(4):298-301
Carbapenem-resistant Klebsiella pneumoniae isolates producing K. pneumoniae carbapenemases (KPC) were first reported in the USA in 2001, and since then, this infection has been reported in Europe, Israel, South America, and China. In Korea, the first KPC-2-producing K. pneumoniae sequence type (ST) 11 strain was detected in 2010. We report the case of a patient with a urinary tract infection caused by KPC-2-producing K. pneumoniae. This is the second report of a KPC-2-producing K. pneumoniae infection in Korea, but the multilocus sequence type was ST258. The KPC-2-producing isolate was resistant to all tested beta-lactams (including imipenem and meropenem), amikacin, tobramycin, ciprofloxacin, levofloxacin, and trimethoprim-sulfamethoxazole, but was susceptible to gentamicin, colistin, polymyxin B, and tigecycline. The KPC-2-producing isolate was negative to phenotypic extended-spectrum beta-lactamase (ESBL) and AmpC detection tests and positive to modified Hodge test and carbapenemase inhibition test with aminophenylboronic acid.
Aged
;
Bacterial Proteins/antagonists & inhibitors/metabolism
;
Carbapenems/pharmacology
;
Drug Resistance, Bacterial/genetics
;
Female
;
Humans
;
Klebsiella pneumoniae/drug effects/genetics/*isolation & purification
;
Microbial Sensitivity Tests
;
Republic of Korea
;
Sequence Analysis, DNA
;
Urinary Tract Infections/*diagnosis/microbiology
;
beta-Lactamases/antagonists & inhibitors/biosynthesis/*genetics/metabolism
9.Combined Use of the Modified Hodge Test and Carbapenemase Inhibition Test for Detection of Carbapenemase-Producing Enterobacteriaceae and Metallo-beta-Lactamase-Producing Pseudomonas spp..
Wonkeun SONG ; Seong Geun HONG ; Dongeun YONG ; Seok Hoon JEONG ; Hyun Soo KIM ; Han Sung KIM ; Jae Seok KIM ; Il Kwon BAE
Annals of Laboratory Medicine 2015;35(2):212-219
BACKGROUND: We evaluated the combined use of the modified Hodge test (MHT) and carbapenemase inhibition test (CIT) using phenylboronic acid (PBA) and EDTA to detect carbapenemase-producing Enterobacteriaceae (CPE) and metallo-beta-lactamase (MBL)-producing Pseudomonas spp. METHODS: A total of 49 isolates of CPE (15 Klebsiella pneumoniae carbapenemase [KPC], 5 Guiana extended-spectrum beta-lactamase [GES]-5, 9 New Delhi metallo-beta-lactamase [NDM]-1, 5 Verona integron-encoded metallo-beta-lactamase [VIM]-2, 3 imipenem-hydrolyzing beta-lactamase [IMP], and 12 oxacillinase [OXA]-48-like), 25 isolates of MBL-producing Pseudomonas spp. (14 VIM-2 and 11 IMP), and 35 carbapenemase-negative controls were included. The MHT was performed for all isolates as recommended by the Clinical and Laboratory Standards Institute. Enhanced growth of the indicator strain was measured in mm with a ruler. The CIT was performed by directly dripping PBA and EDTA solutions onto carbapenem disks that were placed on Mueller-Hinton agar plates seeded with the test strain. RESULTS: Considering the results of the MHT with the ertapenem disk in Enterobacteriaceae and Pseudomonas spp., the CIT with the meropenem disk in Enterobacteriaceae, and the imipenem disk in Pseudomonas spp., three combined disk tests, namely MHT-positive plus PBA-positive, EDTA-positive, and MHT-positive plus PBA-negative plus EDTA-negative, had excellent sensitivity and specificity for the detection of KPC- (100% sensitivity and 100% specificity), MBL- (94% sensitivity and 100% specificity), and OXA-48-like-producing isolates (100% sensitivity and 100% specificity), respectively. CONCLUSIONS: Combined use of the MHT and CIT with PBA and EDTA, for the detection of CPE and MBL-producing Pseudomonas spp., is effective in detecting and characterizing carbapenemases in routine laboratories.
Bacterial Proteins/antagonists & inhibitors/*metabolism
;
Boronic Acids/chemistry/pharmacology
;
Disk Diffusion Antimicrobial Tests/*methods
;
Edetic Acid/chemistry/pharmacology
;
Enterobacteriaceae/drug effects/*enzymology
;
Enterobacteriaceae Infections/diagnosis
;
Humans
;
Pseudomonas/drug effects/*enzymology
;
Pseudomonas Infections/diagnosis
;
Sensitivity and Specificity
;
beta-Lactamases/chemistry/*metabolism
10.The Effect of Rosiglitazone on the Cell Proliferation and the Expressions of p27 and Skp2 in Helicobacter pylori Infected Human Gastric Epithelial Cells.
Sung Soo KIM ; Young Seok CHO ; Hyung Keun KIM ; Ok Ran SHIN ; Hiun Suk CHAE ; Myung Gyu CHOI ; In Sik CHUNG
The Korean Journal of Gastroenterology 2010;55(4):225-231
BACKGROUND/AIMS: Ligands for peroxisome proliferator-activated receptor gamma (PPAR gamma), a member of the ligand-activated nuclear receptor superfamily, exhibit anti-tumoral effects and are associated with de novo synthesis of proteins involved in regulating the cell cycle and cell survival/death. Helicobacter pylori (H. pylori) is an etiologic agent for gastric adenocarcinoma, and raises the cell turnover of gastric epithelium. The aim of this study was to investigate the effect of PPAR gamma ligand rosiglitazone on the cell proliferation and the expressions of p27 and Skp2 protein in H. pylori infected gastric epithelial cells. METHODS: We examined the expression of PPAR gamma by Western blot in H. pylori infected AGS human gastric epithelial cells. The effect of rosiglitazone on the survival of H. pylori infected AGS cells was assessed by cell viability assay. After the treatment of rosiglitazone in H. pylori infected AGS cells, the expressions of p27 and Skp2 were assessed by Western blot. RESULTS: The expression of PPAR gamma protein was increased in H. pylori infected AGS cells. Cell growth was inhibited and decreased in dose- and time- dependent manner in H. pylori infected AGS cells treated with rosiglitazone. A decrease in Skp2 expression and a reciprocal increase in p27 expression were found in dose- and time-dependent manner in H. pylori infected AGS cells treated with rosiglitazone. CONCLUSIONS: Rosiglitazone inhibited the growth of H. pylori infected AGS cells. Rosiglitazone attenuated Skp2 expression, thereby promoting p27 accumulation in H. pylori infected human gastric epithelial cells. Further studies will be needed to find the effects of accumulation on cell turnover in H. pylori infection and the role in the H. pylori-associated gastric carcinogenesis.
Anti-Bacterial Agents/*pharmacology
;
Cell Line
;
Cell Proliferation
;
Cyclin-Dependent Kinase Inhibitor p27/*metabolism
;
Epithelial Cells/metabolism/*microbiology
;
Gastric Mucosa/cytology/metabolism/*microbiology
;
*Helicobacter pylori
;
Humans
;
PPAR gamma/antagonists &inhibitors/metabolism
;
S-Phase Kinase-Associated Proteins/*metabolism
;
Thiazolidinediones/*pharmacology