1.Visualization method of type Ⅳ pili and its application in the study of pili function.
Chinese Journal of Biotechnology 2023;39(11):4534-4549
As an important protein structure on the surface of bacteria, type Ⅳ pili (TFP) is the sensing and moving organ of bacteria. It plays a variety of roles in bacterial physiology, cell adhesion, host cell invasion, DNA uptake, protein secretion, biofilm formation, cell movement and electron transmission. With the rapid development of research methods, technical equipment and pili visualization tools, increasing number of studies have revealed various functions of pili in cellular activities, which greatly facilitated the microbial single cell research. This review focuses on the pili visualization method and its application in the functional research of TFP, providing ideas for the research and application of TFP in biology, medicine and ecology.
Fimbriae, Bacterial/metabolism*
;
Bacterial Proteins/genetics*
;
Bacterial Physiological Phenomena
;
Bacterial Adhesion/physiology*
2.Reciprocal Regulation between Fur and Two RyhB Homologs in
Bin NI ; Hai Sheng WU ; You Quan XIN ; Qing Wen ZHANG ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2021;34(4):299-308
Objective:
To investigate reciprocal regulation between Fur and two RyhB homologs in
Methods:
Regulatory relationships were assessed by a combination of colony morphology assay, primer extension, electrophoretic mobility shift assay and DNase I footprinting.
Results:
Fur bound to the promoter-proximal DNA regions of
Conclusion
Fur and the two RyhB homologs exert negative reciprocal regulation, and RyhB homologs have a positive regulatory effect on biofilm formation in
Bacterial Proteins/metabolism*
;
Biofilms
;
Gene Expression Regulation, Bacterial/physiology*
;
Yersinia pestis/physiology*
3.Bacterial Adherence to Human Buccal Epitheliald Cells and Its Possible Role in Bacterial Colonization in Human Oral Cavity.
Sung Yoon CHOO ; In Hong CHOI ; Joo Deuk KIM
Yonsei Medical Journal 1982;23(1):26-29
The ability of several species of streptococcus and staphylococcus to adhere to human buccal epithelial cells was studied in vitro by using bacteria and epithelial cells isolated from human buccal cavity. Viridans streptococci were found adhering in highest numbers(65 +/- 8 bacteria per epithelial cell) to epithelial cells. Streptococcus pyogenes adhered in great numbers (44 +/- 4), whereas Streptococcus pneumoniae (26 +/- 2), Staphylococcus aureus (21 +/- 2), Staphylococcus epidermidis (14 +/- 2) adhered poorly. These data showed that bacteria differed in their ability to adhere to human buccal epithelial cells. This difference in adhesive ability between bacterial species may correlate with the ability of the bacteria to colonize oral surface of human.
Bacterial Physiology*
;
Cheek
;
Epithelial Cells
;
Human
;
In Vitro
;
Mouth/microbiology*
;
Staphylococcus/physiology
;
Streptococcus/physiology
4.Relationship between the resuscitation promoting role of resuscitation promoting factor and the initial bacteria amount of dormant Mycobacterium tuberculosis.
Zhong-Quan LIU ; Ai-Ying XING ; Shu-Xiang GU ; Hong-Yan JIA ; Zong-De ZHANG
Acta Academiae Medicinae Sinicae 2009;31(4):423-426
OBJECTIVETo investigate the relationship between the resuscitation promoting role of resuscitation promoting factor and the initial bacteria amount of dormant Mycobacterium tuberculosis.
METHODSMycobacterium tuberculosis (dormant bacteria) was cultured for 100 days, then diluted into 1 mg/ml concentration with 7H9, and further diluted into 0.5, 0.25, 0.125, 0.0625, and 0.03125 mg/ml. Twelve new tubes added with 5 ml 7H9 and divided into two groups: the first group was added with the resuscitation-promoting factor protein, and the second group as control was added with 7H9. In each group the above diluted solutions were added. The tubes were located at 37 degrees C for culture. Optical density (OD) was detected on day 15, 25, 30, and 35. From each tube 1 microl culture solution was plated on 7H11 medium for colony counting.
RESULTSOD detection showed that bacteria proliferation in each group had positive linear correlation (P < 0.05, P < 0.01), indicating that the resuscitation-promoting factor played a similiar role in solutions with different dilution concentrations. 7H11 results and the OD results show that these two detection methods in each group had linear correlation (P < 0.05, P < 0.01), indicating that these two methods showed consistent test results.
CONCLUSIONThe resuscitation-promoting factor has no effect on the resuscitation of dormant Mycobacterium tuberculosis and its initial bacteria amount.
Bacterial Proteins ; metabolism ; Cytokines ; metabolism ; Mycobacterium tuberculosis ; physiology ; Resuscitation
5.Activation of silent antibiotic synthesis in Streptomyces lividans by disruption of a negative regulator nsdA, a gene conserved in Streptomyces.
Zhen YU ; Qian WANG ; Zi-Xin DENG ; Mei-Feng TAO
Chinese Journal of Biotechnology 2006;22(5):757-762
The global regulatory gene, nsdA, negatively regulates antibiotics production in Streptomyces coelicolor. Southern blot experiment, using an nsdA fragment of S. coelicolor as probe, indicated that nsdA gene existed in many Streptomyces. Primers were designed based on the published sequences of S. coelicolor and S. avermitilis. PCR amplification and sequencing showed that nsdA in Streptomyces was conservative and that of S. lividans ZX64 has a 100% identity in the nucleotide sequence comparing with that of S. coelicolor A3 (2). The nsdA disrupted mutant of S. lividans was constructed named as WQ2. WQ2 was able to produce actinorhodin but the wild-type strain ZX64 did not, which has a silent gene cluster contributing to the biosynthesis of actinorhodin. However, the ability was lost when another copy of the wild nsdA gene was introduced into WQ2. All the results above indicate that nsdA homologous gene is wildly existent and conserved in Streptomyces. And it plays a role in negatively regulating the actinorhodin synthesis in S. lividans and disruption of it can activate the silent gene cluster.
Anti-Bacterial Agents
;
biosynthesis
;
Blotting, Southern
;
Genes, Bacterial
;
physiology
;
Genes, Regulator
;
physiology
;
Multigene Family
;
Streptomyces lividans
;
genetics
6.Role of TMS5: staphylococcal multidrug-efflux protein QacA.
Bei JIA ; Ting-quan ZHOU ; Ai-long HUANG ; Wen-xiang HUANG
Chinese Medical Journal 2008;121(5):409-413
BACKGROUNDQacA, a main exporter mediating the multidrug-resistance of Staphylococcus aureus to a variety of antiseptics and disinfectants, possesses a topology of 14 alpha-helical transmembrane segments (TMS). Our study aimed to determine the importance and topology of amino acid residues in and flanking the cytoplasmic end of TMS5.
METHODSSite-directed mutagenesis was used to mutate 5 residues, including L146, A147, V148, W149 and S150, into cysteine. A minimum inhibitory concentration (MIC) and transport assay with or without N-ethylmaleimide (NEM) were performed to analyse the function of these mutants.
RESULTSAll of the mutants showed comparable protein expression levels. MIC analysis suggested that mutant W149C showed low resistance levels to the drugs, but the mutations at L146, A147, V148, and S150C had little or no effect on the resistance level. And the results of the fluorimetric transport assay were in agreement with those of MIC analysis, that is to say, W149C did not allow transport to the substrates to be tested, while the other mutants retained significant transport ability. The reaction of the different mutant proteins with Fluorescein-NEM revealed that the mutant L146C was highly reactive with NEM; the W149C and S150C mutants were moderately reactive; A147C was barely reactive and V148C showed no reactivity.
CONCLUSIONSThe study identified that residues W149 and S150 situated at the interface of the aqueous: lipid junction as functionally important residues, probably involved in the substrate binding and translocation of QacA.
Bacterial Proteins ; chemistry ; physiology ; Drug Resistance, Bacterial ; Ethylmaleimide ; pharmacology ; Indoles ; metabolism ; Membrane Transport Proteins ; chemistry ; physiology ; Structure-Activity Relationship
7.Use of rich BHI medium instead of synthetic TMH medium for gene regulation study in Yersinia pestis.
Yi Quan ZHANG ; Li Zhi MA ; Li WANG ; He GAO ; Ya Fang TAN ; Zhao Biao GUO ; Jing Fu QIU ; Rui Fu YANG ; Dong Sheng ZHOU
Biomedical and Environmental Sciences 2012;25(6):639-644
OBJECTIVEThis study is to verify the use of rich BHI medium to substitute synthetic media for gene regulation studies in Yersinia pestis.
METHODSThe transcriptional regulation of rovA by PhoP or via temperature upshift, and that of pla by CRP were investigated when Y. pestis was cultured in BHI. After cultivation under 26 °C, and with temperature shifting from 26 to 37 °C, the wild-type (WT) strain or its phoP or crp null mutant (ΔphoP or Δcrp, respectively) was subject to RNA isolation, and then the promoter activity of rovA or pla in the above strains was detected by the primer extension assay. The rovA promoter-proximal region was cloned into the pRW50 containing a promoterless lacZ gene. The recombinant LacZ reporter plasmid was transformed into WT and ΔphoP to measure the promoter activity of rovA in these two strains with the β-Galactosidase enzyme assay system.
RESULTSWhen Y. pestis was cultured in BHI, the transcription of rovA was inhibited by PhoP and upon temperature upshift while that of pla was stimulated by CRP.
CONCLUSIONThe rich BHI medium without the need for modification to be introduced into the relevant stimulating conditions (which are essential to triggering relevant gene regulatory cascades), can be used in lieu of synthetic TMH media to cultivate Y. pestis for gene regulation studies.
Bacterial Proteins ; genetics ; metabolism ; Bacteriological Techniques ; Culture Media ; pharmacology ; Gene Expression Regulation, Bacterial ; drug effects ; physiology ; Yersinia pestis ; metabolism ; physiology
8.Extracellular polysaccharides matrix--an often forgotten virulence factor in oral biofilm research.
Hyun KOO ; Jin XIAO ; Marlise I KLEIN
International Journal of Oral Science 2009;1(4):229-234
Antigens, Bacterial
;
metabolism
;
Bacterial Adhesion
;
physiology
;
Biofilms
;
growth & development
;
Dental Caries
;
microbiology
;
Extracellular Matrix
;
physiology
;
Glucosyltransferases
;
metabolism
;
Humans
;
Mouth
;
microbiology
;
Polysaccharides, Bacterial
;
physiology
;
Streptococcus mutans
;
enzymology
;
pathogenicity
;
physiology
;
Virulence
;
Virulence Factors
;
physiology
9.Study of oral microbial adhesion and biofilm formation on the surface of nano-fluorohydroxyapatite/polyetheretherketone composite.
Lixin WANG ; Huan ZHANG ; Yi DENG ; Zuyuan LUO ; Xiyun LIU ; Shicheng WEI ; Email: SC-WEI@PKU.EDU.CN.
Chinese Journal of Stomatology 2015;50(6):378-382
OBJECTIVETo develop novel polyetheretherketone (PEEK) based nanocomposites which possess the favorable antibacterial property, and to investigate the oral microbial adhesion and biofilm formation on the surfaces of PEEK, nano-fluorohydroxyapatite (n-FHA)-PEEK and nano-hydroxyaptite (n-HA)-PEEK.
METHODSThe bacterial adhesion and biofilm formation on the surfaces of n-FHA-PEEK, n-HA-PEEK were investigated via microbial viability assay kit and laser scanning confocal microscope (LSCM), respectively, with pure PEEK as control group.
RESULTSNo significantly statistical difference were found in the bacterial adhesion amounts on the surfaces of n-FHA-PEEK, n-HA-PEEK and PEEK at 1 h and 4 h. However, the number of bacteria on the n-FHA-PEEK surface decreased dramatically at 2 h (0.496 ± 0.008) compared with n-HA-PEEK groups (0.543 ± 0.015, P < 0.01). Although the biofilms formation on surfaces observed by LSCM had similar morphology and thickness at 3, 7, 14 d, that on the n-FHA-PEEK surface showed the highest dead-to-live bacteria ratio among the three materials at 14 d.
CONCLUSIONSThe combination of n-HA, especially for the n-FHA could inhibit the bacteria adhesion and accelerate the bacterial death, eventually may have an influence on the structure of biofilms and reduce the risk of peri-implantitis. Therefore, n-FHA-PEEK nanocomposites presented a good prospect for clinical applications as dental implant materials.
Bacterial Adhesion ; physiology ; Bacterial Load ; Biofilms ; Dental Implants ; microbiology ; Hydroxyapatites ; Ketones ; Nanocomposites ; microbiology ; Polyethylene Glycols
10.The gene wxcA of Xanthomonas campestris pv. campestris 8004 strain involved in EPS yield.
Guang-Tao LU ; Ji-Liang TANG ; Guang-Ning WEI ; Yong-Qiang HE ; Bao-Shan CHEN
Chinese Journal of Biotechnology 2004;20(4):477-483
Xanthomonas campestris pv. campestris (Xcc), the pathogenic agent of black rot disease in cruciferous plants, produces large amount of extracellular polysaccharide (EPS), which has found wide applications in industry. For the great commercial value of the xanthan gum, many of the genes involved in EPS biosynthesis have been cloned and the mechanism of EPS biosynthesis also has been studied. In order to clone genes involved in EPS biosynthesis, Xcc wild-type strain 8004 was mutagenized with transposon Tn5 gusA5, and a number of EPS-defective mutants were isolated in our previous work. The Tn5 gusA5 inserted sites of these mutants were located by using thermal asymmetric interlaced PCR, and results showed that two EPS-defective mutants were insertion mutants of the gene wxcA which involved in lipopolysaccharide (LPS) biosynthesis. The gene wxcA involved in lipopolysaccharide biosynthesis but dose not extracellular polysaccharide in others' report. wxcA::Tn5 gusA5 mutant 021C12, the polar mutant, was complemented with recombinant plasmid pLATC8570 harboring an intact wxcA gene in this work, but the yield of EPS of the wxcA::Tn5 gusA5 mutant was not restored. In order to identify the function of wxcA gene of Xcc 8004 strain, the gene wxcA was deleted by gene replacement strategy, and the no-polar mutant of wxcA was obtained. DeltawxcA mutant strain, named Xcc 8570, was confirmed by using both PCR and southern analysis. Beside the LPS biosynthesis of deltawxcA mutant was affected, The EPS yield of deltawxcA mutant strain reduced by 50% as compared with the wild-type strain 8004. DeltawxcA mutant could be complemented in trans with the intact wxcA gene, and the EPS yield of the mutant was restored. The combined data showed that wxcA gene not only involved in LPS biosynthesis but also EPS yield in Xcc 8004 strain.
Cell Proliferation
;
Genes, Bacterial
;
physiology
;
Lipopolysaccharides
;
biosynthesis
;
Mutation
;
Polysaccharides, Bacterial
;
biosynthesis
;
Xanthomonas campestris
;
genetics