1.Bacillus thuringiensis isolated from soil in oil palm plantation with high toxicity against Oryctes rhinoceros larvae
Flatya Indah Anggraini ; Maria Sugiharti ; Antonius Suwanto ; Nisa Rachmania ; Bibiana Widiawati Lay
Malaysian Journal of Microbiology 2021;17(4):345-351
Aims:
Oryctes rhinoceros beetle is one of the most damaging pests of oil palm and cause high oil palm mortality. The
empty fruit bunch mulch and rotten old trunk of oil palm in the field provide the organic matter for the breeding sites and
increases the number of O. rhinoceros larvae. Bacillus thuringiensis as bioinsecticide can synthesize crystal proteins
toxic to the larvae. The present study was aimed to find effective B. thuringiensis isolates as biopesticide against O.
rhinoceros larvae.
Methodology and results:
Screening process was carried out through heating of soil sample suspension at 80 °C to
eliminate the non-spore formers and plated onto T3 medium. Colony morphology was observed, followed by Gram and
endospore staining. The crystal protein was observed by Coomassie Brilliant Blue (CBB) staining. Bioassay test was
conducted by force-feed method followed by food contamination method. The results showed isolates SBB33 and
SBB35 were able to infect and caused high mortality to the O. rhinoceros larvae. Isolates SBB33 and SBB35 showed
the highest mortality against 1st instar larvae (94.44% and 75% respectively) and 3rd instar larvae (64.8% and 60%
respectively) compared to control treatments. The 16S rRNA gene sequencing showed SBB33 has high similarity with B.
thuringiensis strain 3S2-3, while SBB35 has high similarity with B. thuringiensis strain GCU_BTi10. Protein separation of
the spore-crystal mixture by SDS-PAGE showed the prominence of 66 kDa protein band that was predicted to be Cry
toxins which is specific to coleopterans insect.
Conclusion, significance and impact of study
Bacillus thuringiensis isolates SBB33 and SBB35 have high potential
as biopesticides against O. rhinoceros larvae and could be used to control major pests in oil palm plantation.
Bacillus thuringiensis--isolation &
;
purification
;
Coleoptera
2.Impact of Bacillus thuringiensis on inhibiting certain Alternaria alternata’s mycotoxins isolated from infected potatoes
Nesrine Hassan Youssef ; Mayada Ali Sabra
Malaysian Journal of Microbiology 2022;18(2):163-169
Aims:
Potatoes are considered one of the most strategic vegetable crops all over the world. Alternaria alternata has recently contaminated certain potatoes farms in different regions in Egypt. Among thirteen samples from fifteen regions were studied in a precedent study. Our study was aimed to investigate the effect of Bacillus thuringiensis subsp. Kurosaki suspension on inhibiting the growth of the three tested isolates of A. alternata and minimizing their mycotoxins production in vitro using three isolates with three levels of highly, moderate and low pathogenicity with unequal amounts of dual mycotoxins production.
Methodology and results:
Three isolates of A. alternata from three regions, Kom Hamada (KH3), Alamin (Alam1) and Nobaria (NO3), which were determined as a producer of tenuazonic acid (TeA) and alternariol monomethyl ether (AME) toxins. Bacillus thuringiensis (Bt) use as commercial fungicide was applied with three suspension concentrations (75, 150 and 300 μg/mL) as inhibitor for the two mycotoxins. Our results illustrated that the three tested isolates recorded high TeA and AME inhibition efficacies by increasing the Bt suspension concentration. The highest inhibitory concentration of Bt was at concentration 75 μg/mL for isolated from Nobaria third region (NO3) and Alam1 it was (99.83 and 99.74%) for mycotoxin (AME) while, TeA mycotoxin had the most inhibition percentage (99.58%) at concentration 150 μg/mL for the isolate (NO3).
Conclusion, significance and impact of study
The preliminary results of the study suggest that B. thuringiensis spores’ suspension with different concentrations can be used as anti-mycotoxigenic agents to inhibit the (TeA) and (AME) mycotoxins produced by Alternaria alternata.
Bacillus thuringiensis
;
Alternaria--isolation &
;
purification
;
Solanum tuberosum
3.Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang City, East Java on Aedes aegypti larvae.
Zulfaidah Penata GAMA ; Nobukazu NAKAGOSHI ; Suharjono ; Faridah SETYOWATI
Asian Pacific Journal of Tropical Biomedicine 2013;3(2):111-117
OBJECTIVETo investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae.
METHODSSoil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%.
RESULTSAmong the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae.
CONCLUSIONSSix indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×10(8) cells/mL).
Aedes ; microbiology ; Animals ; Bacillus thuringiensis ; isolation & purification ; physiology ; Biological Control Agents ; Indonesia ; Insecticides ; Larva ; microbiology ; Lethal Dose 50 ; Mosquito Control
4.Cloning and expression product of vip3A gene from Bacillus thuringiensis and analysis of inseceicidal activity.
Jian-Wu CHEN ; Li-Xia TANG ; Mu-Jin TANG ; Yong-Xia SHI ; Yi PANG
Chinese Journal of Biotechnology 2002;18(6):687-692
The vip3 A gene in a size of 2.3 kb amplified from wild-type Bacillus thuringiensis strain S184 by PCR was cloned into pGEM-T Easy vector and its sequence was analysized by DNASTAR. The plasmid pOTP was constructed by inserting vip3A-S184 gene into the expression vector pQE30 and then was transformed into E. coli M15. E. coli M15 cells harbouring the plasmid pOTP were induced with 1 mmol/L IPTG to express 89 kD protein which was confirmed to be Vip3A-S184 by Western blot. Experiments showed that about 19% of Vip3A-S184 proteins were soluble, and others were insoluble proteins and formed inclusion bodies observed by transmission electron microscopy(TEM). The target protein was purified under the native condition and the polyclonal antibody was prepared by immunizing rabbits. The polyclonal antibody was used to detect Vip3A proteins expressed in Bacillus thuringiensis. Bioassay showed that Vip3A-S184 showed a high toxicity against 3 tested insect larvae including Spodoptera exigua, Spodoptera litura and Helicoverpa armigera.
Animals
;
Bacillus thuringiensis
;
genetics
;
Bacterial Proteins
;
genetics
;
isolation & purification
;
pharmacology
;
Base Sequence
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
Insecticides
;
pharmacology
;
Molecular Sequence Data
;
Pest Control, Biological
;
Recombinant Proteins
;
biosynthesis
;
isolation & purification
;
pharmacology
;
Spodoptera
5.Screening of Bacillus thuringiensis strains containing vip3A genes and analysis of gene conservation.
Jian-Wu CHEN ; Li-Xia TANG ; Shao-Yun SONG ; Mei-Jin YUAN ; Yi PANG
Chinese Journal of Biotechnology 2003;19(5):538-544
Vip3A, a novel insecticidal protein, is secreted by Bacillus thuringiensis (Bt) during vegetative growth. Vip3A protein possesses insecticidal activity against a wild spectrum of lepidopteran insect larvae. Since the first cloning of vip3A gene from Bt, many other vip3A genes have been isolated. To investigate vip3A genes contribution to Bt and reflect the revolution relationships, the strains containing vip3A genes were screened and gene similarity was analyzed. 114 wild-type Bacillus thuringiensis (Bt) strains isolated from different regions and 41 standard Bt strains from the Institute of Pasteur were screened for the vip3A genes using PCR amplification. 39 strains including B. thuringiensis subsp. kurstaki (Btk) HD-1 were found to contain the vip3A genes. Because acrystallerous strain Cry- B derived from Btk HD-1 was proved not to contain vip3A gene, it suppose that the vip3A gene may be located at the plasmids. Vip3A proteins expressed in these strains were detected with polyclonal antibody by Western blot and 4 strains among them were shown not to express the Vip3A proteins. The vip3A genes amplified from wild-type Bacillus thuringiensis strains S101 and 611 with different levels of activity against lepidopteran insect larvae were cloned into pGEM-T Easy vector. Alignment of these 2 putative Vip3A proteins with 6 others (Vip3A (a), Vip3A(b), Vip3A-S, Vip3A-S184, Vip83 and Vip3V) in the GenBank data base and 2 reported Vip3A proteins (Vip14 and Vip15) showed that vip3A genes are highly conservative. The plasmids pOTP-S101 and pOTP-611 were constructed by in- serting 2 vip3A genes (vip3A-S101 and vip3A-611) into the expression vector pQE30 respectively and were transformed into E. coli M15. E. coli M15 cells harboring the pOTP plasmids were induced with 1 mmol/L IPTG to express 89 kDa protein. Experiments showed that the level of soluble proteins of Vip3A-S101 in E. coli M15[pOTP-S101] and Vip3A-611 in E. coli M15 [pOTP-611] were about 48% and 35% respectively. Bioassay showed that each of these Vip3A proteins had similar toxicity against neonate Spodoptera litura larvae, indicating that some amino acids change had little effect on the insecticidal activity of proteins. Although vip3A genes are conservative, the unknown insecticidal spectrum is still to be brought out. Vip3A genes can be used for the construction of the Bt engineered strains and transgenic plants. In addition, vip3A genes are excellent candidates for delay of the pest resistance due to the difference of the action model from that of Bt delta-endotoxins.
Animals
;
Bacillus thuringiensis
;
genetics
;
isolation & purification
;
metabolism
;
Bacterial Proteins
;
genetics
;
metabolism
;
toxicity
;
Blotting, Western
;
Electrophoresis, Polyacrylamide Gel
;
Insecticides
;
metabolism
;
toxicity
;
Larva
;
drug effects
;
Models, Biological
;
Polymerase Chain Reaction
;
Spodoptera
;
drug effects
;
Toxicity Tests