1.A novel resolution vector with Bacillus thuringiensis plasmid replicon ori44.
Lan WU ; Ming SUN ; Chen-Guang ZHU ; Lei ZHANG ; Zi-Niu YU
Chinese Journal of Biotechnology 2002;18(3):335-338
The resolution recognization sites of transposon Tn4430 of Bacillus thuringiensis was inserted into cloning vector pRSET B and pUC19, resulting recombinant plasmids pBMB1201 and pBMB1202. Both of the mini res fragments, BamHI/HindIII fragment in pBMB1201 and EcoRI/HindIII fragment in pBMB1202, were ligated to the 3.3 kb EcoRI/HindIII fragment of shuttle vector pHT3101, which contained the ori. Ec, ampr and emr antibiotic resistant genes, resulting recombinant plasmid pBMB1203. After deleted the BamHI and EcoRI sites which located ouside the two res sites, resolution vector pBMB1204 was resulted. There are multiple cloning sites between two copies of resolution sites which have the same direction. The plasmid replication origin ori44, which come from B. thuringiensis sub sp. kurstaki strain YBT-1520, was inserted into the multiple cloning sites of pBMB1204 and then resolution shuttle vector pBMB1205 was obtained. With spectinomycin resistant gene as target, it was found that the resolution rate is 100% and the stability of the resolved plasmid is 93%. Using this shuttle vector, antibiotic resistance markers and other non-B. thuringiensis DNA can be selectively eliminated after the selection of transformants by antibiotic resistance marker. This vector is very useful to solve the gene safety problem while has no effect on target gene expression.
Bacillus thuringiensis
;
genetics
;
DNA Transposable Elements
;
Genetic Vectors
;
Plasmids
;
Replicon
2.Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Bacillus thuringiensis toxin.
Leilei LIU ; Peiwen XU ; Kaiyu LIU ; Wei WEI ; Zhongshen CHANG ; Dahui CHENG
Chinese Journal of Biotechnology 2022;38(5):1809-1823
Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.
Animals
;
Bacillus thuringiensis/genetics*
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
Endotoxins/metabolism*
;
Hemolysin Proteins/metabolism*
;
Insecta/metabolism*
;
Insecticide Resistance/genetics*
;
Insecticides/pharmacology*
;
Pest Control, Biological
3.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
4.The analysis of Bacillus thuringiensis vegetative insecticical protein gene cloning and expression.
Qi-Liang CAI ; Zi-Duo LIU ; Ming SUN ; Fang WEI ; Zi-Niu YU
Chinese Journal of Biotechnology 2002;18(5):578-582
Three kinds of Bacillus thuringiensis serotype-subsp. Leesis(H33) strain YBT-833, subsp. Aizawai(H7) strain YBT-1416 and subsp. Kurstaki(H3ab) strain YBT-1535, which were isolated by our lab, are chosen as original strain to clone vegetative insecticidal protein gene. Southern hybridization showed that vip genes are all localized at roughly 4-5 kb size-fractionated XbaI fragments of total DNA from YBT-833, YBT-1416 and YBT-1535. Three subgenomic libraries containing the vip gene fragment, were constructed with pUC19 as vector. Then, three vegetative insecticidal protein gene vip83, vip14 and vip15 are obtained from the libraries through the methods of colony-blot-in-situ screening and enzyme-cut detection. Comparision of DNA sequence made out that only vip83 gene exist five different base pairs with known vip genes. Because the sequences of vip14 and vip15 are the same, two of the three genes, vip83 and vip14, were subcloned to shuttle vehicle pHT315 to get recombinant plasmids pBMB8901 and pBMB8902 in turn. The plasmids were separately transformed into vip Bt. receptors BMB171 and 4Q7 to obtain four engineered strains BMB8901-171, BMB8902-171, BMB8901-4Q7 and BMB8902-4Q7. SDS-PAGE results indicated that all recombinant strains express 88 kD vegetative insecticidal protein. Bioassay also showed that the proteins of genes vip83 and vip14 both have certain toxicity to Lepidopteran insect larvae such as Heliochis armigera, Spodotera exigua and Plutella xylostella. While the toxicity of vip protein from four engineered strains to Plutella xylostellas are highest, whose LC50 value is 28.6, 31.6, 45.4 and 37.6 microL/mL respectively. This study will contributed to construct high efficacy and wide spectrum engineered strains on theory and reality.
Animals
;
Bacillus thuringiensis
;
genetics
;
Bacterial Proteins
;
chemistry
;
genetics
;
pharmacology
;
Cloning, Molecular
;
Insecticides
;
pharmacology
;
Pest Control, Biological
;
Recombinant Proteins
;
biosynthesis
;
pharmacology
5.Essential expression and inducible synthesis polymorphism of chitinase in Bacillus thuringiensis.
Chichu XIE ; Yuehua CHEN ; Jun CAI ; Chuan LIU ; Yanling CHEN
Chinese Journal of Biotechnology 2010;26(11):1532-1538
Chitinases were produced by a lot of microorganisms. Chitinase gene expression in most of the chitinase producing bacteria was inducible by chitin. Low levels of chitinase were observed in the presence of glucose. To date, however, the regulation of such chitinase gene in Bacillus thuringiensis had not been well studied. In this paper, all 77 Bacillus thuringiensis strains were grown in the medium with or without chitin. We measured quantitatively the chitinase activity of the cultures. Moreover, we investigated the suppressive effect of glucose on chitinase of 4 strains. Also we studied the relationship between chitin induction and glucose suppression on chitinase. This investigation demonstrated that all tested B. thuringiensis strains could produce chitinase without chitin. After induction, the chitinolytic activity of 31 tested strains had no obvious response to the inducer, whereas 44 stains increased in different degree. Among these strains, most of them did not markedly increase the levels of chitinase, and many stains simultaneously displayed the expression mode of inducible and constitutive. The glucose inhibited the inductive effect of chitin, but it could not inhibit the basal expression of chitinase. Two strains No. 38 and No. 75 belonged to different expression types. But we just found several different bases in the regulatory region of chitinase genes chiA and chiB from them.
Bacillus thuringiensis
;
enzymology
;
growth & development
;
Base Sequence
;
Chitin
;
pharmacology
;
Chitinases
;
biosynthesis
;
genetics
;
Culture Media
;
chemistry
;
Culture Techniques
;
Glucose
;
pharmacology
;
Molecular Sequence Data
;
Polymorphism, Genetic
6.Comparison of codon optimizations of cry1Ah1 gene in rice.
Zongliang ZHOU ; Zhimin LIN ; Lili GENG ; Jun SU ; Changlong SHU ; Feng WANG ; Yanming ZHU ; Jie ZHANG
Chinese Journal of Biotechnology 2012;28(10):1184-1194
cry1Ah1, one of holo-type cry genes, cloned in this laboratory from Bacillus thuringiensis strain has been patented in China, and it encoded a protein with strong insecticidal activity against certain lepidopteran insect pests, such as Chilo suppressalis. cry1Ah1 gene is exhibiting good application prospects. In order to improve the expression level of cry1Ah1 gene in rice, and investigate the effect of codon usage preference of gene expression, we designed five different optimized schemes for cry1Ah1 insecticidal critical fragment in accordance with bias of rice codon, to improve G+C content, removed the shear signal and unstable factors. Optimized cry1Ah1 genes were transformed into Escherichia coli Rosetta (DE3) respectively, and 65 kDa polypeptides was expressed normally in inclusion body separately. All of these expressed polypeptides showed insecticidal activity against 2nd-instar larvae of Plutella xylostella and neonate of Chilo suppressalis. After transformation with modified cry1Ah1 genes into Var nippobare, the transgenic rice seedlings were detected by PCR, the positive rate containing target gene was more than 87%. Afterwards, the results of real-time RT-PCR and ELISA assay indicated that the highest expression level of five modified cry1Ah1 genes was that using the highest frequent codons. Average expression amount of Cry1Ah1 polypeptides was 0.104% of total soluble proteins from the positive transgenic rice.
Animals
;
Bacillus thuringiensis
;
genetics
;
metabolism
;
Bacterial Proteins
;
biosynthesis
;
genetics
;
Cloning, Molecular
;
Codon
;
genetics
;
Endotoxins
;
biosynthesis
;
genetics
;
Hemolysin Proteins
;
biosynthesis
;
genetics
;
Insecticides
;
Lepidoptera
;
Oryza
;
genetics
;
Pest Control, Biological
;
methods
;
Plants, Genetically Modified
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
7.Expression and insecticidal activity of a novel gene cry2ab4 from Bacillus thuringiensis strain B-Pr-88.
Chang-You LI ; Jie ZHANG ; Fu-Ping SONG ; Lan-Lan HAN ; Guo-Xun LI ; Da-Fang HUANG
Chinese Journal of Biotechnology 2007;23(4):634-638
The full length cry2Ab gene was cloned by PCR-RFLP method from Bt strain B-Pr-88, which was isolated in China with high toxicity to the Lepidopteran insect pests. Nucleic acid sequence analysis showed that this gene was 1902 base pairs encoding 633 amino acids. This cry gene was named cry2Ab4 as a novel gene by Bacillus thuringiensis Delta Endotoxin Nomenclature Committee. The full open reading frame sequence of the cry2Ab4 gene was amplified with a pair of PCR primers L2ab5/L2ab3 designed according to its DNA sequence,and inserted into the BamH I /EcoR I sites of E. coli expression vector pET21b to obtain the recombinant plasmid pET-2Ab4. The result of SDS-PAGE proved that Cry2Ab4 could be expressed as a 60 kD protein in E. coli BL21 (DE3)strain induced by IPTG. Bioassay of the expressed product of the cry2Ab4 gene showed that Cry2Ab4 was highly toxic to the larvae of Helicoverpa armigera and Leguminivora glycinivorella, moderately active to the larvae of Plutella xylostella and Chilo suppressalis, but not insecticidal to the larvae of Spodotera exigua and Ostrinia furnacalis. Our result indicated that cry2Ab4 gene could be used as a novel gene for generation of transgenic plants and engineered microorganism.
Bacillus thuringiensis
;
genetics
;
Bacterial Proteins
;
biosynthesis
;
genetics
;
Cloning, Molecular
;
Endotoxins
;
biosynthesis
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Genes, Bacterial
;
Hemolysin Proteins
;
biosynthesis
;
genetics
;
Pest Control, Biological
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Sequence Analysis, DNA
8.Bacillus thuringiensis helper protein P20 affects the formation of Cry1Ab.
Mu-Jin TANG ; Mei-Jin YUAN ; Jian-Wu CHEN ; Yong-Xia SHI ; Shao-Ling ZENG ; Jian-Xiu YU ; Yi PANG
Chinese Journal of Biotechnology 2003;19(5):566-571
The Cry1Ab differs most significantly from the other related ICPs by its absence of a carboxyl terminus of 28 amino acids including four cysteines; consequently it is less stable. We report that the helper protein P20 plays a role in the expression and crystallization of Cry1Ab. Three Cry1Ab expression plasmids pT1B, pP1B, and pDP1B, were constructed based on the shuttle vector pHT3101. The vector pT1B does not contain the p20 gene, pP1B carries p20, and pDP1B contains p20 with cry1A(c) promoter. Transformants were obtained by electroporating the plasmids into Bacillus thuringiensis acrystalliferous mutant CryB. Western blot demonstrated that crylAb was expressed as a 130 kD protein in all the transformants, and some of the protein was partially degraded into a 60 kD peptide. Quantitative protein analysis indicated that the amount of the 130 kD protein varied in the transformants and was in the ratio of 1:1.4:1.5 for PT1B, pP1B and pDP1B respectively. For the 60 kD proteins, the ratio was 1:1.1:1.6. Microscopic examination revealed that the size of the typical pyramidal crystals in the three transformants was in the order of T1B < P1B < DP1B. Bioassay showed that T1B, P1B and DP1B were all toxic to the larvae of Helicoverpa armigera with similar LC50. This study suggested that P20 plays a role in the expression and crystallization of Cry1Ab.
Animals
;
Bacillus thuringiensis
;
genetics
;
metabolism
;
ultrastructure
;
Bacterial Proteins
;
genetics
;
metabolism
;
pharmacology
;
Biological Assay
;
methods
;
Blotting, Western
;
Electroporation
;
Endotoxins
;
genetics
;
metabolism
;
pharmacology
;
Hemolysin Proteins
;
genetics
;
metabolism
;
pharmacology
;
Microscopy, Electron, Transmission
;
Moths
;
drug effects
;
Promoter Regions, Genetic
;
genetics
9.Relationship between structure and function of loops from Bacillus thuringiensis insecticidal crystal protein Cry1Ba.
Guangjun WANG ; Jie ZHANG ; Donghui SUN ; Fuping SONG ; Dafang HUANG
Chinese Journal of Biotechnology 2008;24(9):1631-1636
To indicate the relationship between structure and function of loops from Bacillus thuringiensis insecticidal crystal protein Cry1Ba, and the influence of amino acids mutation on toxicity against diamond back moth Plutella xylostella, five mutations at the loops of Cry1Ba were constructed by overlapping primer PCR, and expressed in E. coli BL21 (DE3). Bioassay results showed that the toxicity of mutation M1 (loop1: 340WSNTR344-deletion), compared with that of Cry1Ba (LC50 0.96 microg/mL), decreased significantly with LC50 35.51 microg/mL. And the toxicity of mutation M2 (402Y-G), M3 (400GIYLEP405-PSAV), M4 (400GIYLEPIH407-ILGS) was also reduced to some extent respectively. Only M5 (mutation at loop3: 472LQSRV476 - AGAVYTL) showed slightly increased activity against P. xylostella, but not significantly (LC50 0.81 microg/mL). Referring to the structures of Cry1Ba which was predicted using Swiss-Model software, and bioassay data, we can conclude that loop1 and loop2 play a important role on determining the activity of Cry1Ba against P. xylostella.
Animals
;
Bacillus thuringiensis
;
genetics
;
metabolism
;
Bacterial Proteins
;
chemistry
;
genetics
;
Endotoxins
;
chemistry
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Hemolysin Proteins
;
chemistry
;
genetics
;
Models, Molecular
;
Moths
;
microbiology
;
Mutation
;
Protein Structure, Secondary
;
Structure-Activity Relationship
10.Cloning and superexpression of cry1Ac gene from 20kb DNA associated with Bacillus thuringiensis Cry1A Crystal Protein.
Hong-Yuan HU ; Li-Qiu XIA ; Hong-Juan SHI ; Yun-Jun SUN ; Bi-Da GAO ; Xue-Zhi DING
Chinese Journal of Biotechnology 2004;20(5):656-661
The CrylA Crystal Protein from Bacillus thuringiensis is associated with DNA, but the role and sequences of these DNA molecules are unknown. CrylA bipyramidal crystals from B. thuringiensis strain 4.0718 was selectively dissolved and associated DNA was extracted from protoxin. The DNA was digested with Nde I to obtain 3 to 5 kb fragments and then the fragments were subcloned into pMD18-T vector, screening of recombinants were done by PCR-RFLP and sequencing. The ORF of cry1Ac gene was amplified by primers designed and then subcloned. The 3.5 kb BamH I and Sal I fragments of pMDX35 was inserted into the pET30a vector, giving 8.9 kb recombinant plasmid, pETX35. ETX35 strain were obtained by transformed pETX35 into B121 (DE3). A 141 kD fusion protein was superexpressed as inclusion bodies. Quantitative protein analysis indicated that the amount of 141 kD protein was above the level of 51.36% of total cellular protein. Plasmid pHTX42 constructed from shuttle vector pHT304 was transformed B. thuringiensis acrystalliferous strain XBU001 with electroporation to obtain the recombinant HTX42. The recombinant protein was found with a molecular mass of 130 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Scanning analysis indicated that the expressed protein accounted up to 79.28% of total cellular proteins and accumulated in the cells mounted up to 64.13% of cellular dry weight. Under Atomic Force Microscopy (AFM), typical bipyramidal crystals from HTX42 strain were found with a size of 1.2 microm x 2.0 microm. Bioassay showed that these inclusion bodies of ETX35 strain and crystals from HTX42 strain were highly toxic against the larvae of Plutella xylostella. On such a base, constructing insecticidal recombinant and analyzing the source, structure, and function of the 20 kb DNA can be further achieved.
Animals
;
Bacillus thuringiensis
;
genetics
;
Bacterial Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Cloning, Molecular
;
Endotoxins
;
biosynthesis
;
genetics
;
pharmacology
;
Hemolysin Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Microscopy, Atomic Force
;
Moths
;
Plasmids
;
Recombinant Proteins
;
biosynthesis
;
pharmacology