1.Construction of DNA ladder based on 16S rRNA gene of Bacillus subtilis using touchdown PCR technique
Tran Gia Huy ; Nguyen Thi Kieu Anh ; Nguyen Thi Lien
Malaysian Journal of Microbiology 2020;16(5):425-431
Aim:
DNA molecular size markers or DNA ladders play a vital role in molecular biology laboratories where DNA
electrophoresis experiments are usually conducted. This study aimed to produce a 100 bp DNA ladder at laboratory
scale, which could be applied to determine the size of DNA fragments in molecular biology experiments.
Methodology and results:
In this study, 14 primers including 4 forwards and 10 reverses were designed based on the
16S rRNA gene sequence of Bacillus subtilis. These primers were able to amplify 10 DNA fragments with accurate sizes
from 100 to 1000 bp. Furthermore, touchdown PCR was involved to maximize the specificity and yield of PCR products.
Ten DNA fragments with the sizes including 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 bp were synthesized,
and such bands were equivalent with commercial DNA ladders. Moreover, the quantity and quality of PCR products
were measured using a nanodrop spectrophotometer. The optimal concentration ratios between such fragments (100-
1000 bp) were 800, 300, 150, 150, 500, 50, 50, 50, 50 and 50 (ng/µL), respectively. These ratios showed the clear and
high resolution on 1.5% agarose gel.
Conclusion, significance and impact of the study
The results indicated that 16S rRNA gene of B. subtilis was a
potential material for DNA ladder preparation due to the multiple copies number of this gene. Furthermore, in
combination with touchdown PCR, the nonspecific bands were reduced, and the products could be used directly without
the need of purification step.
Bacillus subtilis--genetics
2.Genomic Diversity and Evolution of Bacillus subtilis.
Gang YU ; Xun Cheng WANG ; Wang Hong TIAN ; Ji Chun SHI ; Bin WANG ; Qiang YE ; Si Guo DONG ; Ming ZENG ; Jun Zhi WANG ;
Biomedical and Environmental Sciences 2015;28(8):620-625
Bacillus subtilis is the focus of both academic and industrial research. Previous studies have reported a number of sequence variations in different B. subtilis strains. To uncover the genetic variation and evolutionary pressure in B. subtilis strains, we performed whole genome sequencing of two B. subtilis isolates, KM and CGMCC63528. Comparative genomic analyses of these two strains with other B. subtilis strains identified high sequence variations including large insertions, deletions and SNPs. Most SNPs in genes were synonymous and the average frequency of synonymous mutations was significantly higher than that of the non-synonymous mutations. Pan-genome analysis of B. subtilis strains showed that the core genome had lower dN/dS values than the accessory genome. Whole genome comparisons of these two isolates with other B. subtilis strains showed that strains in different subspecies have similar dN/dS values. Nucleotide diversity analysis showed that spizizenii subspecies have higher nucleotide diversity than subtilis subspecies. Our results indicate that genes in B. subtilis strains are under high purifying selection pressure. The evolutionary pressure in different subspecies of B. subtilis is complex.
Bacillus subtilis
;
genetics
;
Evolution, Molecular
;
Genes, Bacterial
;
Polymorphism, Single Nucleotide
3.Identification, biological characteristics, and control of pathogen causing southern blight of Pinellia ternata.
Jia ZHOU ; Qiao-Huan CHEN ; Jia-Wei XU ; Hong CHEN ; Bi-Sheng HUANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2022;47(19):5209-5216
In summer in 2020, Pinellia ternata in many planting areas in Hubei suffered from serious southern blight, as manifested by the yellowing and wilted leaves and rotten tubers. This study aims to identify the pathogen, clarify the biological characteristics of the pathogen, and screen fungicides. To be specific, the pathogen was isolated, purified, and identified, and the pathogenicity was detected according to the Koch's postulates. Moreover, the biological characteristics of the pathogen were analyzed. Furthermore, PDA plates and seedlings were used to determine the most effective fungicides. The results showed that the mycelia of the pathogen were white and villous with silk luster, which produced a large number of white to black brown sclerotia. The pathogen was identified as Athelia rolfsii by morphological observation and molecular identification based on LSU and TEF gene sequences. The optimum growth conditions for A. rolfsii were 30 ℃ and pH 5-8, and the optimum conditions for the germination of sclerotia were 25 ℃ and pH 7-9. Bacillus subtilis, difenoconazole, and flusilazole were identified as effective fungicides with PDA, and their half maximal effective concentration(EC_(50)) was all less than 5 mg·L~(-1). The effective fungicides screened with the seedlings were hymexazol and difenoconazole. Based on the screening experiments, difenoconazole can be used as the main agent for the prevention and treatment of southern blight.
Pinellia/genetics*
;
Fungicides, Industrial/pharmacology*
;
Seedlings
;
Bacillus subtilis
;
Mycelium
4.Effects of different application methods of Bacillus subtilis agent on soil microbial diversity and growth of muskmelon.
Yali HUANG ; Liwei ZHENG ; Yuanyuan HUANG ; Zhenhua JIA ; Shuishan SONG ; Zaixing LI
Chinese Journal of Biotechnology 2020;36(12):2644-2656
Continuous planting of muskmelon and excessive application of chemical fertilizers have caused a series of problems, such as imbalance of the soil micro-ecological environment, serious soil-borne diseases and yield loss. Application of Bacillus subtilis agent is an important way to improve soil micro-ecological environment, prevent soil-borne diseases, and promote plant growth. In this study, B. subtilis was used as experimental agent to analyze the effects of different application methods on the soil microbial diversity and growth of muskmelon in greenhouse. The number of culturable microorganisms in soil was measured by dilution-plate method. The diversity of soil uncultivated microorganisms was determined by Illumina Miseq sequencing technology. The yield of muskmelon was measured by weighing method. The number of culturable bacteria in the root irrigation, hole application and dipping root application groups was higher than that of the control in different muskmelon growth stages, but there was no significant difference among the three different application methods. The number of soil fungi from B. subtilis agent treatment groups in flowering stage was significantly lower in comparison to the control group. However, B. subtilis agent treatment did not cause significant difference on soil fungi number at the fruiting and pulling stage. Diversity analysis of uncultured microorganisms showed that the Shannon index values of bacteria were higher and Simpson index values were lower respectively in the three B. subtilis treatment groups than that in the control. Moreover, the dipping root treatment produced the lowest Shannon index value and the highest Simpson index value of fungi. NMDS and cluster analysis showed that B. subtilis agents dipping root treatment significantly affected the bacterial and fungal flora, both of which were clustered into one independent branch. The application of B. subtilis agents, especially dipping root treatment, significantly decreased the abundance of Bacteroidetes, increased the abundance of Actinobacteria and Acidobacteria. The B. subtilis agent treatment didn't produce significant effect on the diversity of fungal flora except Chytridiomycota. The height, stem diameter and leaf area of muskmelon increased by applying B. subtilis agents, and dipping root treatment produced the most significant effect. As a new type of environmental protection fertilizer, B. subtilis agent can increase the number of soil culturable microorganisms, improve soil microbial diversity, and promote growth and yield. This study would provide a scientific basis for the rational application of B. subtilis.
Bacillus subtilis/genetics*
;
Fertilizers
;
Fungi
;
Soil
;
Soil Microbiology
5.Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host.
Xinyuan YANG ; Yi RAO ; Mengxi ZHANG ; Jiaqi WANG ; Wenyuan LIU ; Dongbo CAI ; Shouwen CHEN
Chinese Journal of Biotechnology 2023;39(3):1096-1106
L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.
Bacillus licheniformis/metabolism*
;
Asparaginase/genetics*
;
Bacillus/genetics*
;
Protein Sorting Signals
;
Promoter Regions, Genetic/genetics*
;
Bacillus subtilis/genetics*
;
Bacterial Proteins
6.Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology.
Qian KANG ; Mengjie XIANG ; Dawei ZHANG
Chinese Journal of Biotechnology 2021;37(3):923-938
Bacillus subtilis is a model strain for studying the physiological and biochemical mechanisms of microorganism, and is also a good chassis cell for industrial application to produce biological agents such as small molecule compounds, bulk chemicals, industrial enzymes, precursors of drugs and health product. In recent years, studies on metabolic engineering methods and strategies of B. subtilis have been increasingly reported, providing good tools and theoretical references for using it as chassis cells to produce biological agents. This review provides information on systematically optimizing the Bacillus subtilis chassis cell by regulating global regulatory factors, simplifying and optimizing the genome, multi-site and multi-dimensional regulating, dynamic regulating through biosensors, membrane protein engineering. For producing the protein reagent, the strain is optimized by optimizing the promoters, signal peptides, secretion components and building the expression system without chemical inducers. In addition, this review also prospects the important issues and directions that need to be focused on in the further optimization of B. subtilis in industrial production.
Bacillus subtilis/genetics*
;
Bacterial Proteins/genetics*
;
Biotechnology
;
Metabolic Engineering
;
Promoter Regions, Genetic
;
Protein Sorting Signals/genetics*
7.Genome shuffling method of Bacillus subtilis.
Junjie YANG ; Wenchao FAN ; Han XIAO ; Chunhong GUAN ; Chuanzeng CAO ; Haifeng SHAO ; Weihong JIANG ; Sheng YANG
Chinese Journal of Biotechnology 2010;26(10):1385-1392
Genome shuffling methods were explored for Bacillus subtilis strain molecular breeding. Recycling protoplast fusion, recycling transformation and recycling universal transduction were used for genome shuffling in B. subtilis. Four strains with different nutrition-deficiency markers were used as initial strains. After five rounds protoplast fusion, transformation or transduction, the descendant with 4 markers had not been detected, and the rate of descendant with 3 markers were 4.53 x 10(-4), 1.64 x 10(-4), 4.47 x 10(-3), respectively. A computer program was made to simulate the recycling fusion process. Based on simulation result and comparing the genome shuffling result of B. subtilis in this experiment and that of Streptomyces coelicolor reported in references, effective genome shuffling needs a high recombination rate of at least between 10(-3) and 10(-2).
Bacillus subtilis
;
classification
;
genetics
;
DNA Shuffling
;
Genetic Techniques
;
Genome, Bacterial
;
genetics
;
Protein Engineering
;
Transformation, Bacterial
8.Molecular modification and highly efficient expression of L-asparaginase from Rhizomucor miehei.
Manchi ZHU ; Xian ZHANG ; Zhi WANG ; Wenxuan LIN ; Meijuan XU ; Taowei YANG ; Minglong SHAO ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(9):3242-3252
L-asparaginase hydrolyzes L-asparagine to produce L-aspartic acid and ammonia. It is widely distributed in microorganisms, plants and serum of some rodents, and has important applications in the pharmaceutical and food industries. However, the poor thermal stability, low catalytic efficiency and low yield hampered the further application of L-asparaginase. In this paper, rational design and 5' untranslated region (5'UTR) design strategies were used to increase the specific enzyme activity and protein expression of L-asparaginase derived from Rhizomucor miehei (RmAsnase). The results showed that among the six mutants constructed through homology modeling combined with sequence alignment, the specific enzyme activity of the mutant A344E was 1.5 times higher than the wild type. Subsequently, a food-safe strain Bacillus subtilis 168/pMA5-A344E was constructed, and the UTR strategy was used for the construction of recombinant strain B. subtilis 168/pMA5 UTR-A344E. The enzyme activity of B. subtilis 168/pMA5 UTR-A344E was 7.2 times higher than that of B. subtilis 168/pMA5-A344E. The recombinant strain B. subtilis 168/pMA5 UTR-A344E was scaled up in 5 L fermenter, and the final yield of L-asparaginase was 489.1 U/mL, showing great potential for industrial application.
Asparaginase/genetics*
;
Bacillus subtilis/genetics*
;
Industrial Microbiology
;
Protein Engineering
;
Rhizomucor/enzymology*
;
Sequence Alignment
9.Strategies and tools for metabolic engineering in Bacillus subtilis.
Xueqin LÜ ; Yaokang WU ; Lu LIN ; Xianhao XU ; Wenwen YU ; Shixiu CUI ; Jianghua LI ; Guocheng DU ; Long LIU
Chinese Journal of Biotechnology 2021;37(5):1619-1636
As a typical food safety industrial model strain, Bacillus subtilis has been widely used in the field of metabolic engineering due to its non-pathogenicity, strong ability of extracellular protein secretion and no obvious codon preference. In recent years, with the rapid development of molecular biology and genetic engineering technology, a variety of research strategies and tools have been used to construct B. subtilis chassis cells for efficient synthesis of biological products. This review introduces the research progress of B. subtilis from the aspects of promoter engineering, gene editing, genetic circuit, cofactor engineering and pathway enzyme assembly. Then, we also summarized the application of B. subtilis in the production of biological products. Finally, the future research directions of B. subtilis are prospected.
Bacillus subtilis/genetics*
;
Bacterial Proteins/genetics*
;
Gene Editing
;
Metabolic Engineering
;
Promoter Regions, Genetic
10.Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis.
Zhenghui LU ; Yuling ZHOU ; Xiaozhou ZHANG ; Guimin ZHANG
Chinese Journal of Biotechnology 2015;31(11):1543-1552
Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.
Bacillus subtilis
;
genetics
;
physiology
;
Gene Regulatory Networks
;
Metabolic Engineering
;
Spores, Bacterial
;
physiology