1.Using transporter to enhance the acid tolerance of Bacillus coagulans DSM1.
Jing LI ; Yu WANG ; Bo YU ; Limin WANG ; Jiansong JU
Chinese Journal of Biotechnology 2023;39(8):3394-3405
As the precursor of polylactic acid (PLA), optically pure l-lactic acid production is attracting increasing attention. The accumulation of lactic acid during fermentation inhibits strain growth. Therefore, it is necessary to improve the acid tolerance of lactic acid producers. In this study, comparative transcriptomic analysis was performed to investigate the effects of transporters on lactic acid tolerance of Bacillus coagulans DSM1, which is an l-lactic acid producer. The genes with more than two-fold up-regulation in transcriptional profile were further verified using real-time PCR. The transcriptional levels of RS06895, RS10595, RS10595, RS00500, RS00500, RS10635 and RS10635 were enhanced during lactic acid fermentation. Strain overexpressing RS10595 exhibited a retarded cell growth and low lactic acid production at pH 6.0, but an improved lactic acid production at pH 4.6. This study may facilitate the investigation of the acid tolerance mechanism in B. coagulans DSM1, as well as the construction of efficient lactic acid producers.
Bacillus coagulans/genetics*
;
Lactic Acid
;
Cell Cycle
;
Cell Proliferation
;
Fermentation
2.Expression and characterization of β-N-acetylglucosaminidases from Bacillus coagulans DSM1 for N-acetyl-β-D glucosamine production.
Congna LI ; Shun JIANG ; Chao DU ; Yuling ZHOU ; Sijing JIANG ; Guimin ZHANG
Chinese Journal of Biotechnology 2021;37(1):218-227
β-N-acetylglucosaminidases (NAGases) can convert natural substrates such as chitin or chitosan to N-acetyl-β-D glucosamine (GlcNAc) monomer that is wildly used in medicine and agriculture. In this study, the BcNagZ gene from Bacillus coagulans DMS1 was cloned and expressed in Escherichia coli. The recombinant protein was secreted into the fermentation supernatant and the expression amount reached 0.76 mg/mL. The molecular mass of purified enzyme was 61.3 kDa, and the specific activity was 5.918 U/mg. The optimal temperature and pH of the BcNagZ were 75 °C and 5.5, respectively, and remained more than 85% residual activity after 30 min at 65 °C. The Mie constant Km was 0.23 mmol/L and the Vmax was 0.043 1 mmol/(L·min). The recombinant BcNagZ could hydrolyze colloidal chitin to obtain trace amounts of GlcNAc, and hydrolyze disaccharides to monosaccharide. Combining with the reported exochitinase AMcase, BcNagZ could produce GlcNAc from hydrolysis of colloidal chitin with a yield over 86.93%.
Acetylglucosamine
;
Acetylglucosaminidase
;
Bacillus coagulans
;
Chitin
;
Chitinases
;
Hydrogen-Ion Concentration
;
Recombinant Proteins/genetics*