1.Improvement of neutral protease activity of Bacillus amyloliquefaciens LX-6 by combined ribosome engineering and medium optimization and its application in soybean meal fermentation.
Yifan ZHU ; Xinyi HUANG ; Tao HAN ; Jiteng WANG ; Xiaoping YU ; Zheng MA
Journal of Zhejiang University. Science. B 2025;26(8):805-812
Soybean meal (SBM) prepared by soybean crushing is the most popular protein source in the poultry and livestock industries (Cai et al., 2015) due to its economic manufacture, high protein content, and good nutritional value. Despite these benefits, SBM contains various antigen proteins such as glycinin and β-conglycinin, which account for approximately 70% of the total proteins of the SBM and reduce digestibility and damage intestinal function (Peng et al., 2018). Treating SBM with proteases (neutrase, alcalase, and trypsin) or fermentation can eliminate these antigen proteins (Contesini et al., 2018). Because of its safety and rapid growth cycle, Bacillus strains are considered ideal for the fermentation industry (Yao et al., 2021). SBM fermented by Bacillus yields products with high nutritional value and low levels of antinutritional factors (ANFs), stimulating research in this area (Yuan et al., 2017). Kumari et al. (2023) demonstrated that fermentation with Bacillus species effectively degrades antigen proteins and increases crude protein content. The degradation of antigen proteins relies on protease hydrolysis. Low protease production is the major obstacle hindering the widespread use of microbial fermentation techniques.
Bacillus amyloliquefaciens/metabolism*
;
Fermentation
;
Glycine max/metabolism*
;
Soybean Proteins/metabolism*
;
Peptide Hydrolases/metabolism*
;
Ribosomes/metabolism*
;
Globulins
;
Antigens, Plant
;
Seed Storage Proteins
2.Exploring local microbial communities in adenoids through 16S rRNA gene sequencing.
Luohua YUAN ; Haibing LIU ; Wenli LI ; Zhonghua PENG ; Yuling MA ; Jian ZOU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):51-56
Objective:To explore the hypothesis of "pathogen storage pool" by analyzing the local microbial community of adenoids. Methods:Under the guidance of a 70° nasal endoscope, sterile swabs were used to collect secretions from the adenoid crypts of the subjects. The samples were sent to the laboratory for DNA extraction and standard bacterial 16S full-length sequencing analysis. Results:At the species level, the top three microbial communities in adenoid crypts were Bacillus subtilis(18.78%), Fusobacterium pyogenes(11.42%), and Streptococcus pneumoniae(9.38%). Conclusion:The local microbial community of adenoids exhibits a high degree of diversity, including microbial communities from the oral cavity and gastrointestinal tract. Our research results support the hypothesis that adenoids act as a " pathogen reservoir".
Humans
;
Adenoids/microbiology*
;
RNA, Ribosomal, 16S/genetics*
;
Microbiota/genetics*
;
Streptococcus pneumoniae/isolation & purification*
;
Bacillus subtilis/genetics*
;
DNA, Bacterial/analysis*
3.Optimization of fermentation conditions in shake flask of JA20-1, a VOCs-producing biocontrol bacterium and evaluation of its biocontrol effect against Botrytis cinerea of ginseng.
Yu-Ze ZHANG ; Yan-Cong HU ; Xiu-Xiu WANG ; Cong ZHANG ; Zhong-Hua QU ; Bao-Hui LU ; Xue WANG ; Jie GAO
China Journal of Chinese Materia Medica 2025;50(7):1748-1757
Bacillus mycoides JA20-1 was screened and identified as a biocontrol bacterium with a high capacity for producing volatile organic compounds(VOCs) in the laboratory. This strain had significant inhibitory effects on various postharvest disease pathogens in crops, such as Botrytis cinerea, as well as soil-borne disease pathogens in ginseng, such as Sclerotinia ginseng. In order to accelerate its industrialization process, in this study, single-factor experiments and response surface optimization methods were used. The fermentation medium and fermentation conditions in the shake flask of strain JA20-1 were systematically optimized by using cell production volume as the response variable. Meanwhile, the biocontrol effect of JA20-1 on B. cinerea of ginseng during the storage period was evaluated by using the method of fumigation in a dry dish in vitro. The results indicated that the optimal fermentation medium formulation for strain JA20-1 was as follows: 1% yeast paste, 1% soluble starch, 0.25% K_2HPO_4·3H_2O, and 0.2% NaCl. The optimal fermentation conditions in the shake flask were vaccination size of 3%, culture volume of 50 mL in a 250 mL Erlenmeyer flask, pH of 6.2, fermentation temperature of 34 ℃, shaking speed of 180 r·min~(-1), and incubation time of 18 hours. The bacteria count in the fermentation broth under these conditions reached 2.17 × 10~8 CFU·mL~(-1), which was 6.58 times higher than before. The average control efficacy of the fermentation broth on Botrytis cinerea of ginseng under in vitro fumigation reached 61.70% and 84.04% respectively, when 20 mL and 30 mL per dish were used. The research provided theoretical support and technical foundation for the development and utilization of Bacillus mycoides JA20-1 and the biocontrol of soil-borne diseases in ginseng and postharvest diseases in crops.
Botrytis/drug effects*
;
Fermentation
;
Panax/microbiology*
;
Plant Diseases/prevention & control*
;
Volatile Organic Compounds/metabolism*
;
Bacillus/physiology*
;
Pest Control, Biological/methods*
;
Biological Control Agents/metabolism*
;
Culture Media/chemistry*
4.Live combined Bacillus subtilis and Enterococcus faecium improves glucose and lipid metabolism in type 2 diabetic mice with circadian rhythm disruption via the SCFAs/GPR43/GLP-1 pathway.
Ruimin HAN ; Manke ZHAO ; Junfang YUAN ; Zhenhong SHI ; Zhen WANG ; Defeng WANG
Journal of Southern Medical University 2025;45(7):1490-1497
OBJECTIVES:
To investigate the effects of live combined Bacillus subtilis and Enterococcus faecium (LCBE) on glucose and lipid metabolism in mice with type 2 diabetes mellitus (T2DM) and circadian rhythm disorder (CRD) and explore the possible mechanisms.
METHODS:
KM mice were randomized into normal diet (ND) group (n=8), high-fat diet (HFD) group (n=8), and rhythm-intervention with HFD group (n=16). After 8 weeks of feeding, the mice were given an intraperitoneal injection of streptozotocin (100 mg/kg) to induce T2DM. The mice in CRD-T2DM group were further randomized into two equal groups for treatment with LCBE (225 mg/kg) or saline by gavage; the mice in ND and HFD groups also received saline gavage for 8 weeks. Blood glucose level of the mice was measured using a glucometer, and serum levels of Bmal1, PER2, insulin, C-peptide and lipids were determined with ELISA. Colon morphology and hepatic lipid metabolism of the mice were examined using HE staining and Oil Red O staining, respectively, and fecal short-chain fatty acids (SCFAs) was detected using LC-MS; GPR43 and GLP-1 expression levels were analyzed using RT-qPCR and Western blotting.
RESULTS:
Compared with those in CRD-T2DM group, the LCBE-treated mice exhibited significant body weight loss, lowered levels of PER2, insulin, C-peptide, total cholesterol (TC) and LDL-C, and increased levels of Bmal1 and HDL-C levels. LCBE treatment significantly increased SCFAs, upregulated GPR43 and GLP-1 expressions at both the mRNA and protein levels, and improved hepatic steatosis and colon histology.
CONCLUSIONS
LCBE ameliorates lipid metabolism disorder in CRD-T2DM mice by reducing body weight and improving lipid profiles and circadian regulators possibly via the SCFAs/GPR43/GLP-1 pathway.
Animals
;
Mice
;
Lipid Metabolism
;
Diabetes Mellitus, Type 2/metabolism*
;
Enterococcus faecium
;
Glucagon-Like Peptide 1/metabolism*
;
Bacillus subtilis
;
Diabetes Mellitus, Experimental/metabolism*
;
Circadian Rhythm
;
Blood Glucose/metabolism*
;
Receptors, G-Protein-Coupled/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Male
;
Chronobiology Disorders/metabolism*
5.Directed evolution improves the catalytic activity of laccase in papermaking.
Hong NI ; Fan YANG ; Lei WANG ; Bianxia LI ; Huanan LI ; Jiashu LIU ; Zhengbing JIANG ; Wanli CHENG
Chinese Journal of Biotechnology 2025;41(1):308-320
As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from Bacillus pumilus and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening. The specific activities of F282L/F306L and Q275P were 280.87 U/mg and 453.94 U/mg, respectively, which were 1.42 times and 2.30 times that of the wild-type laccase. Q275P demonstrated significantly improved thermal stability, with the relative activity 20% higher than that of the wild-type laccase after incubation at 40 ℃, 50 ℃, and 70 ℃ for 4 h. F282L/F306L and Q275P showed greater tolerance to metal ions and organic solvents than the wild-type laccase. The Km value of the wild-type laccase was 374.97 μmo/L, and those of F282L/F306L and Q275P were reduced to 318.96 μmo/L and 360.71 μmo/L, respectively, which suggested that the substrate affinity of laccase was improved after mutation. The kcat values of F282L/F306L and Q275P for the substrate ABTS were 574.00 s-1 and 898.03 s-1, respectively, which were 1.1 times and 1.7 times that of the wild-type laccase, indicating the improved catalytic efficiency. Q275P demonstrated better performance than the wild-type laccase in pulping, as manifested by the reduction of 0.82 in the Kappa number and the increases of 2.00% ISO, 7.8%, and 7.2% in whiteness, tensile index, and breaking length, respectively. This work lays a foundation for improving the adaptation of laccase to the environment of the papermaking industry.
Laccase/chemistry*
;
Directed Molecular Evolution
;
Enzyme Stability
;
Bacillus pumilus/genetics*
;
Mutation
;
Biocatalysis
;
Catalysis
6.Mining, characterization, and expression of a fructan sucrase for efficient conversion of soybean oligosaccharides.
Bin WANG ; Jingru YING ; Yuanyuan CHEN ; Zemin FANG ; Yazhong XIAO ; Wei FANG ; Dongbang YAO
Chinese Journal of Biotechnology 2025;41(1):333-351
The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme. Finally, recombinant extracellular expression of this gene was carried out in Bacillus subtilis. The results showed that a novel fructan sucrase, BhLS 39, was mined from Bacillus halotolerans. With sucrose and raffinose as substrates, BhLS 39 showed the optimal temperatures of 50 ℃ and 55 ℃, optimal pH 5.5 for both, and Kcat/Km ratio of 3.4 and 6.6 L/(mmol·s), respectively. When 400 g/L raffinose was used as the substrate, the melibiose conversion rate was 84.6% after 30 min treatment with 5 U BhLS 39. Furthermore, BhLS 39 catalyzed the conversion of sucrose to produce levan-type-fructooligosaccharide and levan. Then, the recombinant extracellular expression of BhLS 39 in B. subtilis was achieved. The co-expression of the intracellular chaperone DnaK and the extracellular chaperone PrsA increased the extracellular activity of the recombinant BhLS 39 by 5.2 folds to 17 U/mL compared with that of the control strain. BhLS 39 obtained in this study is conducive to improving the quality and economic benefits of soybean oligosaccharides. At the same time, the strategy used here to enhance the extracellular expression of BhLS 39 will also promote the efficient recombinant expression of other proteins in B. subtilis.
Oligosaccharides/metabolism*
;
Glycine max/metabolism*
;
Bacillus subtilis/metabolism*
;
Sucrase/biosynthesis*
;
Raffinose/metabolism*
;
Fructans/metabolism*
;
Sucrose/metabolism*
;
Bacillus/genetics*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/biosynthesis*
7.Expression and enzymatic characterization of a chitosanase with tolerance to a wide range of pH from Bacillus atrophaeus.
Wenjuan DU ; Awagul TURSUN ; Zhiqin DONG ; Huijuan MA ; Zhenghai MA
Chinese Journal of Biotechnology 2025;41(1):352-362
To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from Bacillus atrophaeus with a high protease yield from the barren saline-alkali soil and expressed this gene in Escherichia coli. The expressed chitosanase of B. atrophaeus (BA-CSN) was purified by nickel-affinity column chromatography. The properties including optimal temperature, optimal pH, substrate specificity, and kinetic parameters of BA-CSN were characterized. The results showed that BA-CSN had the molecular weight of 31.13 kDa, the optimal temperature of 55 ℃, the optimal pH 5.5, and good stability at temperatures below 45 ℃ and pH 4.0-9.0. BA-CSN also had good stability within 4 h of pH 3.0 and 10.0, be activated by K+, Na+, Mn2+, Ca2+, Mg2+, and Co2+, (especially by Mn2+), and be inhibited by Fe3+, Cu2+, and Ag+. BA-CSN showcased the highest relative activity in the hydrolysis of colloidal chitosan, and it had good hydrolysis ability for colloidal chitin. Under the optimal catalytic conditions, BA-CSN demonstrated the Michaelis constant Km and maximum reaction rate Vmax of 9.94 mg/mL and 26.624 μmoL/(mL·min), respectively, for colloidal chitosan. In short, BA-CSN has strong tolerance to acids and alkali, possessing broad industrial application prospects.
Bacillus/genetics*
;
Hydrogen-Ion Concentration
;
Escherichia coli/metabolism*
;
Glycoside Hydrolases/biosynthesis*
;
Substrate Specificity
;
Enzyme Stability
;
Chitosan/metabolism*
;
Temperature
;
Kinetics
;
Cloning, Molecular
;
Bacterial Proteins/biosynthesis*
;
Recombinant Proteins/genetics*
8.Mining and characterization of new enzymes based on Phi29 DNA polymerase.
Mengyao HAO ; Lingling HU ; Minghao HAN ; Congyu LI ; Hong CHANG ; Jianmei LUO ; Huifeng JIANG
Chinese Journal of Biotechnology 2025;41(1):427-436
In recent years, the bacteriophage Φ29 (Phi29) DNA polymerase has garnered increasing attention due to its high-fidelity amplification capacity at constant temperatures. To advance the industrial application of this type of isothermal polymerases, this study mined and characterized new enzymes from the microbial metagenome based on the known Phi29 DNA polymerase sequence. The results revealed that a new enzyme, Php29 DNA polymerase, was identified in the microbial metagenome with plants as the hosts. This enzyme exhibited higher strand displacement activity, with a 59.5% similarity to bacteriophage Φ29. Experimental validation demonstrated that the enzyme had 3'→5' exonuclease activity, and its amplification products can serve as substrates for further catalytic reactions. The discovery and validation of Php29 DNA polymerase gives insights into the future industrial application of isothermal polymerases.
DNA-Directed DNA Polymerase/metabolism*
;
Bacillus Phages/genetics*
;
Metagenome
9.Preparation of multi-layer compound microcapsules and their application in self-healing of concrete cracks.
Jianmiao XU ; Yuanyuan ZHOU ; Feng CHENG ; Zhiqiang LIU
Chinese Journal of Biotechnology 2025;41(1):448-460
Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method. The formulation and drying method of microcapsules were optimized by taking their embedding rate and mechanical properties as evaluation criteria. The calcium transcrystallization process of microcapsules and the crystal form of products were characterized and compared with the calcium transcrystallization process in free cells. Finally, the effects of microcapsule incorporation on mechanical properties, impermeability, and self-healing performance of concrete specimens were then tested. The results showed that the air-dried multi-layer compound microcapsules, formulated with 1.0% wet cells of Bacillus cereus, 1.5% calcium chloride, 3.0% sodium alginate, 5.0% nutrients, 6.0% glycerol, 0.6% chitosan, and 2.0% urea, achieved an embedding rate of 95.3%, a rupture force of 60.0 N and a hardness of 150.8 N. These microcapsules can transform from a solid state to a flowing colloidal state when the microorganisms inside undergo a calcium formation reaction. Both the microcapsules and free cells produced stable calcite crystal forms of calcium carbonate through the calcium conversion reaction, with the microcapsules producing more uniform-sized particles, which are more conducive to accumulation in cracks, thereby enhancing the stability of repair. When microcapsules were incorporated into the concrete specimen at a content of 0.45%, the flexural strength of the specimen increased by 17.3%, and the compressive strength increased by 12.3%. In the water impermeability test, specimens with microcapsules demonstrated better impermeability compensation for the cement concrete than those with free cells. The self-healing effect of cracks proved that multi-layer compound microcapsules could completely repair cracks up to 0.7 mm wide, and a repair rate of 95% for 0.8 mm wide cracks. In this study, a multi-layer compound microcapsule was developed to protect microorganisms in concrete and provide nutrients required for their growth, which provided a new idea for microbial induced calcium carbonate precipitation in concrete crack repair.
Construction Materials
;
Capsules/chemistry*
;
Bacillus cereus/metabolism*
;
Alginates/chemistry*
10.Metabolic engineering of Escherichia coli for efficient production of L-valine.
Guomin LI ; Sihan YAN ; Jiajia YOU ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3473-3486
L-valine is an important branched-chain amino acid widely used in the food, pharmaceutical, and feed industries. Microbial fermentation has become the primary production method for L-valine. However, current industrial production still faces issues such as inefficient carbon flux utilization, imbalance in cofactor supply and demand, and suboptimal fermentation processes, which limit the efficient synthesis of L-valine. To further enhance the production performance of L-valine, In this study, metabolic engineering was conducted for a previously constructed Escherichia coli strain with a high yield of L-valine to optimize carbon flux distribution and balance cofactor consumption. Dual-phase oxygen-controlled fermentation was carried out to enhance L-valine production. Firstly, to address the pyruvate loss, we knocked out multiple competing pathway genes (ldhA, poxB, pflB, frdA, and pta), which resulted in a 48% increase in flask yield of the constructed strain VL-04. Next, we optimized the cofactor supply and demand balance by replacing ilvE with bcd (NADH-preferential) from Bacillus subtilis to construct the strain VL-06, which achieved a flask yield of 22.80 g/L, a further improvement of 25.8%. Subsequently, the fermentation conditions of VL-06 were optimized in a 5 L bioreactor with dual-phase oxygen-controlled fermentation. After optimization, the L-valine production reached 86.44 g/L in 26 h, with a glucose-to-acid conversion rate of 44.08% and a production intensity of 3.32 g/(L·h). This study not only shortens the time for L-valine production but also improves the economic efficiency, providing insights for similar fermentation processes employing dual-phase oxygen control.
Metabolic Engineering/methods*
;
Escherichia coli/genetics*
;
Valine/biosynthesis*
;
Fermentation
;
Bacillus subtilis/genetics*

Result Analysis
Print
Save
E-mail