2.mRNA vaccines for infectious diseases: research progress and applications.
Fengming QIN ; Ning REN ; Wenyu CHENG ; Heng WEI
Chinese Journal of Biotechnology 2023;39(10):3966-3984
Messenger RNA (mRNA) vaccines emerge as promising vaccines to prevent infectious diseases. Compared with traditional vaccines, mRNA vaccines present numerous advantages, such as high potency, safe administration, rapid production potentials, and cost-effective manufacturing. In 2020, two COVID-19 vaccines (BNT162b2 and mRNA-1273) were approved by the Food and Drug Administration (FDA). The two vaccines showed high efficiency in combating COVID-19, which indicates the great advantages of mRNA technology in developing vaccines against emergent infectious diseases. Here, we summarize the type, immune mechanisms, modification methods of mRNA vaccines, and their applications in preventing infectious diseases. Current challenges and future perspectives in developing mRNA vaccines are also discussed.
United States
;
Humans
;
mRNA Vaccines
;
BNT162 Vaccine
;
COVID-19 Vaccines/genetics*
;
Communicable Diseases
;
RNA, Messenger/genetics*
3.BNT162B2 COVID-19 mRNA vaccination did not promote substantial anti-syncytin-1 antibody production nor mRNA transfer to breast milk in an exploratory pilot study.
Citra N Z MATTAR ; Winston KOH ; Yiqi SEOW ; Shawn HOON ; Aparna VENKATESH ; Pradip DASHRAATH ; Li Min LIM ; Judith ONG ; Rachel LEE ; Nuryanti JOHANA ; Julie S L YEO ; David CHONG ; Lay Kok TAN ; Jerry K Y CHAN ; Mahesh CHOOLANI ; Paul Anantharajah TAMBYAH
Annals of the Academy of Medicine, Singapore 2022;51(5):309-312
4.Immunogenicity and reactogenicity of heterologous immunization schedules with COVID-19 vaccines: a systematic review and network meta-analysis.
Pei LI ; Weiwei WANG ; Yiming TAO ; Xiaoyu TAN ; Yujing LI ; Yinjun MAO ; Le GAO ; Lei FENG ; Siyan ZHAN ; Feng SUN
Chinese Medical Journal 2023;136(1):24-33
BACKGROUND:
Data on the immunogenicity and safety of heterologous immunization schedules are inconsistent. This study aimed to evaluate the immunogenicity and safety of homologous and heterologous immunization schedules.
METHODS:
Multiple databases with relevant studies were searched with an end date of October 31, 2021, and a website including a series of Coronavirus disease 2019 studies was examined for studies before March 31, 2022. Randomized controlled trials (RCTs) that compared different heterologous and homologous regimens among adults that reported immunogenicity and safety outcomes were reviewed. Primary outcomes included neutralizing antibodies against the original strain and serious adverse events (SAEs). A network meta-analysis (NMA) was conducted using a random-effects model.
RESULTS:
In all, 11 RCTs were included in the systematic review, and nine were ultimately included in the NMA. Among participants who received two doses of CoronaVac, another dose of mRNA or a non-replicating viral vector vaccine resulted in a significantly higher level of neutralizing antibody than a third CoronaVac 600 sino unit (SU); a dose of BNT162b2 induced the highest geometric mean ratio (GMR) of 15.24, 95% confidence interval [CI]: 9.53-24.39. Following one dose of BNT162b2 vaccination, a dose of mRNA-1273 generated a significantly higher level of neutralizing antibody than BNT162b2 alone (GMR = 1.32; 95% CI: 1.06-1.64), NVX-CoV2373 (GMR = 1.60; 95% CI: 1.16-2.21), or ChAdOx1 (GMR = 1.80; 95% CI: 1.25-2.59). Following one dose of ChAdOx1, a dose of mRNA-1273 was also more effective for improving antibody levels than ChAdOx1 (GMR = 11.09; 95% CI: 8.36-14.71) or NVX-CoV2373 (GMR = 2.87; 95% CI: 1.08-3.91). No significant difference in the risk for SAEs was found in any comparisons.
CONCLUSIONS:
Relative to vaccination with two doses of CoronaVac, a dose of BNT162b2 as a booster substantially enhances immunogenicity reactions and has a relatively acceptable risk for SAEs relative to other vaccines. For primary vaccination, schedules including mRNA vaccines induce a greater immune response. However, the comparatively higher risk for local and systemic adverse events introduced by mRNA vaccines should be noted.
REGISTRATION
PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42021278149.
Adult
;
Humans
;
BNT162 Vaccine
;
2019-nCoV Vaccine mRNA-1273
;
Network Meta-Analysis
;
Immunization Schedule
;
COVID-19/prevention & control*
;
COVID-19 Vaccines/adverse effects*
;
Viral Vaccines
;
mRNA Vaccines
;
Antibodies, Neutralizing
;
Antibodies, Viral
5.Covid-19 vaccine management (Comirnaty and mrna-1273 Moderna) in a teaching hospital in Italy: a short report on the vaccination campaign.
Francesca PAPINI ; Niccolò GRASSI ; Giovanni GUGLIELMI ; Vittorio GATTINI ; Lucia RAGO ; Costanza BISORDI ; Monica SCATENI ; Michele TOTARO ; Alberto TULIPANI ; Andrea PORRETTA ; Lara TAVOSCHI ; Jacopo GUERCINI ; Grazia LUCHINI ; Silvia BRIANI ; Gaetano Pierpaolo PRIVITERA ; Angelo BAGGIANI
Environmental Health and Preventive Medicine 2021;26(1):99-99
OBJECTIVES:
In this article, we aim to share our experience in the hospital reorganization made to conduct the SARS-CoV-2 vaccination campaign, based on the principles of flexibility and adaptability.
STUDY DESIGN:
A descriptive study.
METHODS:
The data concerning the organization of the vaccination campaign were taken from the operative protocol developed by the hospital dedicated task force, composed by experts in hygiene, public health, occupational medicine, pharmacists, nurses, hospital quality, and disaster managers. Data about the numbers of vaccine administered daily were collected by the Innovation and Development Operative Unit database.
RESULTS:
Vaccinations against COVID-19 started across the EU on the 27th of December 2020. The first phase of the vaccination campaign carried out in our hospital was directed to healthcare workers immunization including medical residents, social care operators, administrative staff and technicians, students of medicine, and health professions trainees. The second phase was enlarged to the coverage of extremely fragile subjects. Thanks to the massive employment of healthcare workers and the establishment of dynamic pathways, it was possible to achieve short turnaround times and a large number of doses administered daily, with peaks of 870 vaccines per day. From the 27th of December up to the 14th of March a total of 26,341 doses of Pfizer have been administered. 13,584 were first doses and 12,757 were second doses. From the 4th to the 14th of March, 296 first doses of Moderna were dispensed. It was necessary to implement adequate spaces and areas adopting anti-contagion safety measures: waiting area for subjects to be vaccinated, working rooms for the dilution of the vaccine and the storage of the material, vaccination rooms, post-vaccination observation areas, room for observation, and treatment of any adverse reactions, with an emergency cart available in each working area.
CONCLUSIONS
The teaching hospital of Pisa faced the beginning of the immunization campaign readjusting its spaces, planning an adequate hospital vaccination area and providing an organization plan to ensure the achievement of the targets of the campaign. This represented a challenge due to limited vaccine doses supplied and the multisectoral teams of professionals to coordinate in the shortest time and the safest way possible. The organizational model adopted proved to be adequate and therefore exploited also for the second phase aimed to extremely fragile subjects.
2019-nCoV Vaccine mRNA-1273
;
BNT162 Vaccine
;
COVID-19/prevention & control*
;
COVID-19 Vaccines/administration & dosage*
;
Hospitals, Teaching/organization & administration*
;
Humans
;
Immunization Programs/organization & administration*
;
Italy/epidemiology*
;
SARS-CoV-2/immunology*