1.Differential expression of BKCa channels in atrial fibroblasts in patients with sinus rhythm and atrial fibrillation
BI Hongqin ; LI Miaoling ; ZHOU Wei ; LI Guang ; DONG Yahui ; HUANG Tao ; YU Fengxu
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2017;24(12):937-942
Objective Through analyzing BKCa channel expression in atrial fibroblasts in patients with sinus rhythm and atrial fibrillation (AF), to explore the mechanism of myocardial fibrosis and provide new therapeutic strategies for the treatment and reversal of AF structure reconstruction. Methods We selected 10 patients of rheumatic heart valvular disease who underwent valve replacement surgery. They were 5 patients with sinus rhythm (a sinus rhythm group, 2 males and 3 females with an average age of 49.1±8.3 years) and 5 with AF (an AF group, 3 males and 2 females with an average age of 50.3±5.8 years). About 100 mg tissue was obtained from the right auricula dextra, and the atrial fibroblasts were cultured by tissue block adherence method, and the expression of BKCa channel genes and proteins in cultured fibroblasts was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting methods. Results (1) The general data of 10 patients between the AF group and the sinus rhythm group were compared. There was no significant difference between the two groups in age (t=1.21, P=0.67) and sex (t=2.56, P=0.75). There was statistical difference in the left atrial diameter and the right atrium diameter between the two groups (t=19.45, P=0.01; t=23.52, P=0.06); (2) the mRNA expression of BKCa subunit was detected by qRT-PCR method, and there was no significant difference in the mRNA expression of BKCa α and BKCa β1 between the two groups (t=3.14, P=0.79; t=2.88, P=0.69); (3) the expression of BKCa protein was detected by western blotting method, and there was no significant difference in the protein expression of BKCa α and BKCa β1 between the two groups (t=0.55, P=0.31; t=0.73, P=0.46). Conclusion BKCa pathway may not be involved in the pathogenesis and maintenance of AF, but it may play an important role in the process of myocardial fibrosis.
2.ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis.
Zhiqian BI ; Jia CHEN ; Xiaoyao CHANG ; Dangran LI ; Yingying YAO ; Fangfang CAI ; Huangru XU ; Jian CHENG ; Zichun HUA ; Hongqin ZHUANG
Frontiers of Medicine 2023;17(5):972-992
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
Humans
;
Mice
;
Animals
;
Gastrointestinal Microbiome
;
Intestinal Barrier Function
;
Mice, Inbred C57BL
;
Colitis/metabolism*
;
Inflammatory Bowel Diseases/drug therapy*
;
Inflammation
;
Anti-Inflammatory Agents/pharmacology*
;
Disease Models, Animal