1.Therapeutic effects of curcumin nanoemulsion on cyclophosphamide-induced testicular toxicity in adult male mice
Pourya RAEE ; Shahin AGHAMIRI ; Mahsa Ghaffari NOVIN ; Azar AFSHAR ; Fakhroddin AGHAJANPOUR ; Farid ABDI ; Marefat Ghaffari NOVIN
Clinical and Experimental Reproductive Medicine 2025;52(2):157-166
Objective:
Several chemotherapeutic agents, including cyclophosphamide (CP) and busulfan, have been shown to interfere with spermatogenesis. Accordingly, the main objective of this study was to evaluate the potential therapeutic effects of curcumin nanoemulsion (CUR-NE) on spermatogenesis in mice with CP-induced testicular toxicity.
Methods:
A total of 28 adult male mice were equally divided into four groups: control, CUR-NE (30 mg/kg, daily for 5 weeks), CP (200 mg/kg, single dose), and CP+CUR-NE. Each group was evaluated regarding sperm parameters, DNA fragmentation index, chromatin maturation, reactive oxygen species (ROS) levels, and histological parameters of the testes. Serum levels of follicle-stimulating hormone (FSH), luteinizing hormone, and testosterone were also assessed in all groups.
Results:
In CP-induced mice, CUR-NE treatment significantly improved sperm parameters, including total sperm count, motility, morphology, and DNA integrity. CUR-NE administration was also associated with significantly higher serum levels of testosterone and FSH, as well as testis weight and volume, in the mice treated with CP. Furthermore, CUR-NE treatment significantly increased the number of spermatogonia, primary spermatocytes, round spermatids, and Leydig cells in the testicular tissue of these animals. A marked reduction in ROS levels in the testes tissue was observed following administration of CUR-NE to CP-induced mice.
Conclusion
CUR-NE appears to promote spermatogenesis in mice with CP-induced testicular toxicity by reducing ROS levels, improving testicular stereological parameters, and strengthening the reproductive hormone profile.
2.Therapeutic effects of curcumin nanoemulsion on cyclophosphamide-induced testicular toxicity in adult male mice
Pourya RAEE ; Shahin AGHAMIRI ; Mahsa Ghaffari NOVIN ; Azar AFSHAR ; Fakhroddin AGHAJANPOUR ; Farid ABDI ; Marefat Ghaffari NOVIN
Clinical and Experimental Reproductive Medicine 2025;52(2):157-166
Objective:
Several chemotherapeutic agents, including cyclophosphamide (CP) and busulfan, have been shown to interfere with spermatogenesis. Accordingly, the main objective of this study was to evaluate the potential therapeutic effects of curcumin nanoemulsion (CUR-NE) on spermatogenesis in mice with CP-induced testicular toxicity.
Methods:
A total of 28 adult male mice were equally divided into four groups: control, CUR-NE (30 mg/kg, daily for 5 weeks), CP (200 mg/kg, single dose), and CP+CUR-NE. Each group was evaluated regarding sperm parameters, DNA fragmentation index, chromatin maturation, reactive oxygen species (ROS) levels, and histological parameters of the testes. Serum levels of follicle-stimulating hormone (FSH), luteinizing hormone, and testosterone were also assessed in all groups.
Results:
In CP-induced mice, CUR-NE treatment significantly improved sperm parameters, including total sperm count, motility, morphology, and DNA integrity. CUR-NE administration was also associated with significantly higher serum levels of testosterone and FSH, as well as testis weight and volume, in the mice treated with CP. Furthermore, CUR-NE treatment significantly increased the number of spermatogonia, primary spermatocytes, round spermatids, and Leydig cells in the testicular tissue of these animals. A marked reduction in ROS levels in the testes tissue was observed following administration of CUR-NE to CP-induced mice.
Conclusion
CUR-NE appears to promote spermatogenesis in mice with CP-induced testicular toxicity by reducing ROS levels, improving testicular stereological parameters, and strengthening the reproductive hormone profile.
3.Therapeutic effects of curcumin nanoemulsion on cyclophosphamide-induced testicular toxicity in adult male mice
Pourya RAEE ; Shahin AGHAMIRI ; Mahsa Ghaffari NOVIN ; Azar AFSHAR ; Fakhroddin AGHAJANPOUR ; Farid ABDI ; Marefat Ghaffari NOVIN
Clinical and Experimental Reproductive Medicine 2025;52(2):157-166
Objective:
Several chemotherapeutic agents, including cyclophosphamide (CP) and busulfan, have been shown to interfere with spermatogenesis. Accordingly, the main objective of this study was to evaluate the potential therapeutic effects of curcumin nanoemulsion (CUR-NE) on spermatogenesis in mice with CP-induced testicular toxicity.
Methods:
A total of 28 adult male mice were equally divided into four groups: control, CUR-NE (30 mg/kg, daily for 5 weeks), CP (200 mg/kg, single dose), and CP+CUR-NE. Each group was evaluated regarding sperm parameters, DNA fragmentation index, chromatin maturation, reactive oxygen species (ROS) levels, and histological parameters of the testes. Serum levels of follicle-stimulating hormone (FSH), luteinizing hormone, and testosterone were also assessed in all groups.
Results:
In CP-induced mice, CUR-NE treatment significantly improved sperm parameters, including total sperm count, motility, morphology, and DNA integrity. CUR-NE administration was also associated with significantly higher serum levels of testosterone and FSH, as well as testis weight and volume, in the mice treated with CP. Furthermore, CUR-NE treatment significantly increased the number of spermatogonia, primary spermatocytes, round spermatids, and Leydig cells in the testicular tissue of these animals. A marked reduction in ROS levels in the testes tissue was observed following administration of CUR-NE to CP-induced mice.
Conclusion
CUR-NE appears to promote spermatogenesis in mice with CP-induced testicular toxicity by reducing ROS levels, improving testicular stereological parameters, and strengthening the reproductive hormone profile.
4.The effects of vitamin C and vitamin B12 on improving spermatogenesis in mice subjected to long-term scrotal heat stress
Nafiseh MOEINIAN ; Fatemeh Fadaei FATHABADI ; Mohsen NOROUZIAN ; Hojjat-Allah ABBASZADEH ; Hamid NAZARIAN ; Azar AFSHAR ; Reza SOLTANI ; Fakhroddin AGHAJANPOUR ; Abbas ALIAGHAEI ; Reza Mastery FARAHANI ; Mohammad-Amin ABDOLLAHIFAR
Clinical and Experimental Reproductive Medicine 2024;51(4):334-343
Objective:
Scrotal hyperthermia poses a significant threat to spermatogenesis and fertility in mammalian species. This study investigated the effects of vitamin B12 and vitamin C on spermatogenesis in adult male mice subjected to long-term scrotal hyperthermia. The rationale is based on the sensitivity of germ cells and epididymal sperm to increased scrotal temperatures. While various factors, both internal and external, can raise the testicular temperature, this study focused on the potential therapeutic roles of vitamins B12 and C.
Methods:
After inducing scrotal hyperthermia in mice, vitamin B12 and vitamin C were administered for 35 days. We assessed sperm parameters, serum testosterone levels, stereological parameters, the percentage of apoptotic cells, reactive oxygen species (ROS) levels, and glutathione (GSH) levels. Additionally, real-time polymerase chain reaction was used to analyze the expression of the c-kit, stimulated by retinoic acid gene 8 (Stra8), and proliferating cell nuclear antigen (Pcna) genes.
Results:
Vitamin C was more effective than vitamin B12 in improving sperm parameters and enhancing stereological parameters. The study showed a significant decrease in apoptotic cells and a beneficial modulation of ROS and GSH levels following vitamin administration. Moreover, both vitamins positively affected the expression levels of the c-kit, Stra8, and Pcna genes.
Conclusion
This research deepens our understanding of the combined impact of vitamins B12 and C in mitigating the effects of scrotal hyperthermia, providing insights into potential therapeutic strategies for heat stress-related infertility. The findings highlight the importance of considering vitamin supplementation as a practical approach to counter the detrimental effects of elevated scrotal temperatures on male reproductive health.
5.Maternal exposure to phenanthrene induces testicular apoptosis and Sertoli cell dysfunction in F1 adult male mice: a histological and molecular study
Azar AFSHAR ; Hamid NAZARIAN ; Fatemeh FADAEFATHABADI ; Fakhroddin AGHAJANPOUR ; Reza SOLTANI ; Mohammad-Amin ABDOLLAHIFAR ; Gholamreza HASSANZADEH ; Mohsen NOUROZIAN
Clinical and Experimental Reproductive Medicine 2025;52(1):87-97
Objective:
Phenanthrene, a polycyclic aromatic hydrocarbon, is found in abundance in environmental pollutants, food, and drinking water. This substance can accumulate in body tissues and exert harmful effects. Moreover, phenanthrene can cross the placental barrier, potentially impacting fetal development. We aimed to explore the impacts of maternal exposure to phenanthrene on testicular tissue and Sertoli cell function in F1 mice.
Methods:
Female rats with vaginal plugs were randomly assigned to one of three groups: control, sham, or phenanthrene. The control group received no intervention during pregnancy. In the sham and phenanthrene groups, corn oil and a phenanthrene solution, respectively, were administered via gavage once every 2 days. Offspring were separated by sex 21 days after birth. At 56 days postnatal, male F1 offspring were euthanized, and their testes were harvested for histological and molecular analyses.
Results:
Phenanthrene exposure was associated with a lower testicular weight and volume, a smaller diameter of the seminiferous tubules, and a relative thinning of the germinal epithelium. These changes were associated with increased cellular apoptosis, as shown by the upregulation of caspase 3 expression. Additionally, we observed an increase in vacuolization and residual bodies within the tissue. Conversely, the number of Sertoli cells and expression levels of Sox9, as well as the Ocln and Itgb1 genes, were found to be lowered.
Conclusion
Maternal exposure to phenanthrene impacts both germ cells and Sertoli cells, disrupting their function and leading to fertility disorders in male F1 offspring mice.
6.The effects of vitamin C and vitamin B12 on improving spermatogenesis in mice subjected to long-term scrotal heat stress
Nafiseh MOEINIAN ; Fatemeh Fadaei FATHABADI ; Mohsen NOROUZIAN ; Hojjat-Allah ABBASZADEH ; Hamid NAZARIAN ; Azar AFSHAR ; Reza SOLTANI ; Fakhroddin AGHAJANPOUR ; Abbas ALIAGHAEI ; Reza Mastery FARAHANI ; Mohammad-Amin ABDOLLAHIFAR
Clinical and Experimental Reproductive Medicine 2024;51(4):334-343
Objective:
Scrotal hyperthermia poses a significant threat to spermatogenesis and fertility in mammalian species. This study investigated the effects of vitamin B12 and vitamin C on spermatogenesis in adult male mice subjected to long-term scrotal hyperthermia. The rationale is based on the sensitivity of germ cells and epididymal sperm to increased scrotal temperatures. While various factors, both internal and external, can raise the testicular temperature, this study focused on the potential therapeutic roles of vitamins B12 and C.
Methods:
After inducing scrotal hyperthermia in mice, vitamin B12 and vitamin C were administered for 35 days. We assessed sperm parameters, serum testosterone levels, stereological parameters, the percentage of apoptotic cells, reactive oxygen species (ROS) levels, and glutathione (GSH) levels. Additionally, real-time polymerase chain reaction was used to analyze the expression of the c-kit, stimulated by retinoic acid gene 8 (Stra8), and proliferating cell nuclear antigen (Pcna) genes.
Results:
Vitamin C was more effective than vitamin B12 in improving sperm parameters and enhancing stereological parameters. The study showed a significant decrease in apoptotic cells and a beneficial modulation of ROS and GSH levels following vitamin administration. Moreover, both vitamins positively affected the expression levels of the c-kit, Stra8, and Pcna genes.
Conclusion
This research deepens our understanding of the combined impact of vitamins B12 and C in mitigating the effects of scrotal hyperthermia, providing insights into potential therapeutic strategies for heat stress-related infertility. The findings highlight the importance of considering vitamin supplementation as a practical approach to counter the detrimental effects of elevated scrotal temperatures on male reproductive health.
7.Maternal exposure to phenanthrene induces testicular apoptosis and Sertoli cell dysfunction in F1 adult male mice: a histological and molecular study
Azar AFSHAR ; Hamid NAZARIAN ; Fatemeh FADAEFATHABADI ; Fakhroddin AGHAJANPOUR ; Reza SOLTANI ; Mohammad-Amin ABDOLLAHIFAR ; Gholamreza HASSANZADEH ; Mohsen NOUROZIAN
Clinical and Experimental Reproductive Medicine 2025;52(1):87-97
Objective:
Phenanthrene, a polycyclic aromatic hydrocarbon, is found in abundance in environmental pollutants, food, and drinking water. This substance can accumulate in body tissues and exert harmful effects. Moreover, phenanthrene can cross the placental barrier, potentially impacting fetal development. We aimed to explore the impacts of maternal exposure to phenanthrene on testicular tissue and Sertoli cell function in F1 mice.
Methods:
Female rats with vaginal plugs were randomly assigned to one of three groups: control, sham, or phenanthrene. The control group received no intervention during pregnancy. In the sham and phenanthrene groups, corn oil and a phenanthrene solution, respectively, were administered via gavage once every 2 days. Offspring were separated by sex 21 days after birth. At 56 days postnatal, male F1 offspring were euthanized, and their testes were harvested for histological and molecular analyses.
Results:
Phenanthrene exposure was associated with a lower testicular weight and volume, a smaller diameter of the seminiferous tubules, and a relative thinning of the germinal epithelium. These changes were associated with increased cellular apoptosis, as shown by the upregulation of caspase 3 expression. Additionally, we observed an increase in vacuolization and residual bodies within the tissue. Conversely, the number of Sertoli cells and expression levels of Sox9, as well as the Ocln and Itgb1 genes, were found to be lowered.
Conclusion
Maternal exposure to phenanthrene impacts both germ cells and Sertoli cells, disrupting their function and leading to fertility disorders in male F1 offspring mice.
8.The effects of vitamin C and vitamin B12 on improving spermatogenesis in mice subjected to long-term scrotal heat stress
Nafiseh MOEINIAN ; Fatemeh Fadaei FATHABADI ; Mohsen NOROUZIAN ; Hojjat-Allah ABBASZADEH ; Hamid NAZARIAN ; Azar AFSHAR ; Reza SOLTANI ; Fakhroddin AGHAJANPOUR ; Abbas ALIAGHAEI ; Reza Mastery FARAHANI ; Mohammad-Amin ABDOLLAHIFAR
Clinical and Experimental Reproductive Medicine 2024;51(4):334-343
Objective:
Scrotal hyperthermia poses a significant threat to spermatogenesis and fertility in mammalian species. This study investigated the effects of vitamin B12 and vitamin C on spermatogenesis in adult male mice subjected to long-term scrotal hyperthermia. The rationale is based on the sensitivity of germ cells and epididymal sperm to increased scrotal temperatures. While various factors, both internal and external, can raise the testicular temperature, this study focused on the potential therapeutic roles of vitamins B12 and C.
Methods:
After inducing scrotal hyperthermia in mice, vitamin B12 and vitamin C were administered for 35 days. We assessed sperm parameters, serum testosterone levels, stereological parameters, the percentage of apoptotic cells, reactive oxygen species (ROS) levels, and glutathione (GSH) levels. Additionally, real-time polymerase chain reaction was used to analyze the expression of the c-kit, stimulated by retinoic acid gene 8 (Stra8), and proliferating cell nuclear antigen (Pcna) genes.
Results:
Vitamin C was more effective than vitamin B12 in improving sperm parameters and enhancing stereological parameters. The study showed a significant decrease in apoptotic cells and a beneficial modulation of ROS and GSH levels following vitamin administration. Moreover, both vitamins positively affected the expression levels of the c-kit, Stra8, and Pcna genes.
Conclusion
This research deepens our understanding of the combined impact of vitamins B12 and C in mitigating the effects of scrotal hyperthermia, providing insights into potential therapeutic strategies for heat stress-related infertility. The findings highlight the importance of considering vitamin supplementation as a practical approach to counter the detrimental effects of elevated scrotal temperatures on male reproductive health.
9.Maternal exposure to phenanthrene induces testicular apoptosis and Sertoli cell dysfunction in F1 adult male mice: a histological and molecular study
Azar AFSHAR ; Hamid NAZARIAN ; Fatemeh FADAEFATHABADI ; Fakhroddin AGHAJANPOUR ; Reza SOLTANI ; Mohammad-Amin ABDOLLAHIFAR ; Gholamreza HASSANZADEH ; Mohsen NOUROZIAN
Clinical and Experimental Reproductive Medicine 2025;52(1):87-97
Objective:
Phenanthrene, a polycyclic aromatic hydrocarbon, is found in abundance in environmental pollutants, food, and drinking water. This substance can accumulate in body tissues and exert harmful effects. Moreover, phenanthrene can cross the placental barrier, potentially impacting fetal development. We aimed to explore the impacts of maternal exposure to phenanthrene on testicular tissue and Sertoli cell function in F1 mice.
Methods:
Female rats with vaginal plugs were randomly assigned to one of three groups: control, sham, or phenanthrene. The control group received no intervention during pregnancy. In the sham and phenanthrene groups, corn oil and a phenanthrene solution, respectively, were administered via gavage once every 2 days. Offspring were separated by sex 21 days after birth. At 56 days postnatal, male F1 offspring were euthanized, and their testes were harvested for histological and molecular analyses.
Results:
Phenanthrene exposure was associated with a lower testicular weight and volume, a smaller diameter of the seminiferous tubules, and a relative thinning of the germinal epithelium. These changes were associated with increased cellular apoptosis, as shown by the upregulation of caspase 3 expression. Additionally, we observed an increase in vacuolization and residual bodies within the tissue. Conversely, the number of Sertoli cells and expression levels of Sox9, as well as the Ocln and Itgb1 genes, were found to be lowered.
Conclusion
Maternal exposure to phenanthrene impacts both germ cells and Sertoli cells, disrupting their function and leading to fertility disorders in male F1 offspring mice.