1.A Case of Sarcoidosis Presenting as Livedo.
Sayaka SHIBAMA ; Ken IGAWA ; Takichi MUNETSUGU ; Kunitaro FUKUYAMA ; Aya NISHIZAWA ; Kaoru TAKAYAMA ; Hiroo YOKOZEKI
Annals of Dermatology 2014;26(6):773-774
No abstract available.
Sarcoidosis*
2.Increasing Numbers of Mast Cells in Skin Lesions of Hyperpigmented Mycosis Fungoides with Large-Cell Transformation.
Mayo KONDO ; Ken IGAWA ; Takichi MUNETSUGU ; Sayaka SHIBAMA ; Aya NISHIZAWA ; Shown TOKORO ; Hiroo YOKOZEKI
Annals of Dermatology 2016;28(1):115-116
No abstract available.
Mast Cells*
;
Mycosis Fungoides*
;
Skin*
3.First-in-Human Trial of Photodynamic Therapy for Spinal Cord Malignant Astrocytoma: Study Protocol
Toshiki ENDO ; Yoshiharu TAKAHASHI ; Taketo NISHIZAWA ; Tatsuya SASAKI ; Aya SATO ; Shinjiro FUKAMI ; Satoshi MIYATA ; Jiro AKIMOTO
Neurospine 2024;21(4):1276-1282
Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design. The initial follow-up period is 12 months, at the end of which we will quantify survival after PDT for spinal cord malignant astrocytoma as primary objective. The secondary objective is to quantify the overall progression-free survival of treated patients and the percentage of patients surviving 6 months after PDT without recurrence. Twenty patients suffering from spinal cord malignant astrocytoma will be recruited. In particular, 10 of those should be newly diagnosed World Health Organization grade 4. After obtaining consent, each patient will receive a single intravenous injection of talaporfin sodium (40 mg/m2) 1 day before tumor resection. One day after completing tumor removal, the residual lesion and/or resection cavity will be irradiated using a 664-nm semiconductor laser with a radiation power density of 150 mW/cm2 and a radiation energy density of 27 J/cm2. The procedure will be performed 22–26 hours after talaporfin sodium administration. This study protocol has been reviewed and approved by the Certified Committee in the Japanese Ministry of Health, Labor, and Welfare University Hospital Medical Information Network Clinical Trials Registry (Japan Registry of Clinical Trials number, jRCT2021220040).
4.First-in-Human Trial of Photodynamic Therapy for Spinal Cord Malignant Astrocytoma: Study Protocol
Toshiki ENDO ; Yoshiharu TAKAHASHI ; Taketo NISHIZAWA ; Tatsuya SASAKI ; Aya SATO ; Shinjiro FUKAMI ; Satoshi MIYATA ; Jiro AKIMOTO
Neurospine 2024;21(4):1276-1282
Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design. The initial follow-up period is 12 months, at the end of which we will quantify survival after PDT for spinal cord malignant astrocytoma as primary objective. The secondary objective is to quantify the overall progression-free survival of treated patients and the percentage of patients surviving 6 months after PDT without recurrence. Twenty patients suffering from spinal cord malignant astrocytoma will be recruited. In particular, 10 of those should be newly diagnosed World Health Organization grade 4. After obtaining consent, each patient will receive a single intravenous injection of talaporfin sodium (40 mg/m2) 1 day before tumor resection. One day after completing tumor removal, the residual lesion and/or resection cavity will be irradiated using a 664-nm semiconductor laser with a radiation power density of 150 mW/cm2 and a radiation energy density of 27 J/cm2. The procedure will be performed 22–26 hours after talaporfin sodium administration. This study protocol has been reviewed and approved by the Certified Committee in the Japanese Ministry of Health, Labor, and Welfare University Hospital Medical Information Network Clinical Trials Registry (Japan Registry of Clinical Trials number, jRCT2021220040).
5.First-in-Human Trial of Photodynamic Therapy for Spinal Cord Malignant Astrocytoma: Study Protocol
Toshiki ENDO ; Yoshiharu TAKAHASHI ; Taketo NISHIZAWA ; Tatsuya SASAKI ; Aya SATO ; Shinjiro FUKAMI ; Satoshi MIYATA ; Jiro AKIMOTO
Neurospine 2024;21(4):1276-1282
Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design. The initial follow-up period is 12 months, at the end of which we will quantify survival after PDT for spinal cord malignant astrocytoma as primary objective. The secondary objective is to quantify the overall progression-free survival of treated patients and the percentage of patients surviving 6 months after PDT without recurrence. Twenty patients suffering from spinal cord malignant astrocytoma will be recruited. In particular, 10 of those should be newly diagnosed World Health Organization grade 4. After obtaining consent, each patient will receive a single intravenous injection of talaporfin sodium (40 mg/m2) 1 day before tumor resection. One day after completing tumor removal, the residual lesion and/or resection cavity will be irradiated using a 664-nm semiconductor laser with a radiation power density of 150 mW/cm2 and a radiation energy density of 27 J/cm2. The procedure will be performed 22–26 hours after talaporfin sodium administration. This study protocol has been reviewed and approved by the Certified Committee in the Japanese Ministry of Health, Labor, and Welfare University Hospital Medical Information Network Clinical Trials Registry (Japan Registry of Clinical Trials number, jRCT2021220040).
6.First-in-Human Trial of Photodynamic Therapy for Spinal Cord Malignant Astrocytoma: Study Protocol
Toshiki ENDO ; Yoshiharu TAKAHASHI ; Taketo NISHIZAWA ; Tatsuya SASAKI ; Aya SATO ; Shinjiro FUKAMI ; Satoshi MIYATA ; Jiro AKIMOTO
Neurospine 2024;21(4):1276-1282
Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design. The initial follow-up period is 12 months, at the end of which we will quantify survival after PDT for spinal cord malignant astrocytoma as primary objective. The secondary objective is to quantify the overall progression-free survival of treated patients and the percentage of patients surviving 6 months after PDT without recurrence. Twenty patients suffering from spinal cord malignant astrocytoma will be recruited. In particular, 10 of those should be newly diagnosed World Health Organization grade 4. After obtaining consent, each patient will receive a single intravenous injection of talaporfin sodium (40 mg/m2) 1 day before tumor resection. One day after completing tumor removal, the residual lesion and/or resection cavity will be irradiated using a 664-nm semiconductor laser with a radiation power density of 150 mW/cm2 and a radiation energy density of 27 J/cm2. The procedure will be performed 22–26 hours after talaporfin sodium administration. This study protocol has been reviewed and approved by the Certified Committee in the Japanese Ministry of Health, Labor, and Welfare University Hospital Medical Information Network Clinical Trials Registry (Japan Registry of Clinical Trials number, jRCT2021220040).
7.First-in-Human Trial of Photodynamic Therapy for Spinal Cord Malignant Astrocytoma: Study Protocol
Toshiki ENDO ; Yoshiharu TAKAHASHI ; Taketo NISHIZAWA ; Tatsuya SASAKI ; Aya SATO ; Shinjiro FUKAMI ; Satoshi MIYATA ; Jiro AKIMOTO
Neurospine 2024;21(4):1276-1282
Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design. The initial follow-up period is 12 months, at the end of which we will quantify survival after PDT for spinal cord malignant astrocytoma as primary objective. The secondary objective is to quantify the overall progression-free survival of treated patients and the percentage of patients surviving 6 months after PDT without recurrence. Twenty patients suffering from spinal cord malignant astrocytoma will be recruited. In particular, 10 of those should be newly diagnosed World Health Organization grade 4. After obtaining consent, each patient will receive a single intravenous injection of talaporfin sodium (40 mg/m2) 1 day before tumor resection. One day after completing tumor removal, the residual lesion and/or resection cavity will be irradiated using a 664-nm semiconductor laser with a radiation power density of 150 mW/cm2 and a radiation energy density of 27 J/cm2. The procedure will be performed 22–26 hours after talaporfin sodium administration. This study protocol has been reviewed and approved by the Certified Committee in the Japanese Ministry of Health, Labor, and Welfare University Hospital Medical Information Network Clinical Trials Registry (Japan Registry of Clinical Trials number, jRCT2021220040).
8.A Case of Primary Cutaneous Gamma-Delta T-Cell Lymphoma with Pautrier Microabscess.
Kohei KATO ; Takeshi NAMIKI ; Makiko UENO ; Madoka IIKAWA ; Shown TOKORO ; Aya NISHIZAWA ; Kouhei YAMAMOTO ; Keiko MIURA ; Hiroo YOKOZEKI
Annals of Dermatology 2017;29(2):229-232
No abstract available.
Lymphoma, T-Cell*
;
T-Lymphocytes*