1.Cloning and antimicrobial activity of pigeon avian beta-defensin 5.
Shengnan XIN ; Kexing ZHANG ; Mingyue ZHANG ; Zongxi HAN ; Yuhao SHAO ; Xiaoli LIU ; Shengwang LIU ; Deying MA
Chinese Journal of Biotechnology 2012;28(11):1294-1305
The objective of the study was to clone avian beta-defensin (AvBD) 5 gene from pigeon bone marrow tissues and liver tissues, to express the recombinant AvBD5 protein in E. coli, and to determine its antimicrobial activity. The mRNA of duck AvBD5 was cloned from pigeon bone marrow tissues and liver tissues by RT-PCR. In addition, phylogenetic relationships between amino acid sequence of the pigeon AvBD5, AvBDs from other avian species, and some mammalian beta-defensin-5 were analyzed. The cDNA of pigeon AvBD5 was sub-cloned into pGEX-6p-1 vector to construct recombinant plasmid pGEX-pigeon AvBD5. The recombinant protein was expressed into E. coli and purified. Antimicrobial activity and physical-chemical stability of the recombinant fusion protein were measured in vitro. The complete nucleotide sequence of both cDNAs contained 201 bp nucleotides, encoding a polypeptide of 66 amino acids. Both beta-defensins have six conserved cysteines. Phylogenetic relationships were analyzed. Both pigeon AvBDs shared the highest amino acid homology (87.9% and 78.8%) with duck AvBD5. So it was named as pigeon AvBD5alpha (bone marrow) and AvBD5beta (liver). Both recombinant plasmids were transformed into E. coli BL21 and the bacteria were induced with Isopropyl beta-D-1-Thiogalactopyranoside (IPTG). After purification, antibacterial activity of the purified was investigated. In addition, effect of ionic strength on the antibacterial activity, and hemolytic recombinant protein activity of the purified recombinant protein were investigated. A 32 kDa protein was highly expressed. Both purified recombinant pigeon AvBD5alpha and AvBD5beta exhibited extensive antimicrobial activities against 12 bacteria, including Gram-positive and Gram-negative. In high salt ions concentrations, antibacterial activity of both recombinant proteins was decreased. In addition, the hemolysis activity of recombinant protein was extremely low.
Amino Acid Sequence
;
Animals
;
Anti-Infective Agents
;
metabolism
;
pharmacology
;
Avian Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Cloning, Molecular
;
Columbidae
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
beta-Defensins
;
biosynthesis
;
genetics
;
pharmacology
2.The potential molecular effects of bursal septpeptide II on immune induction and antitumor activity.
Guang Fang ZHOU ; Qing Tao LIU ; Bin ZHOU ; Ya Feng QIU ; Xiao Dong LIU ; Zhi Yong MA ; Xiu Li FENG ; Rui Bing CAO ; Pu Yan CHEN
Journal of Veterinary Science 2015;16(3):325-331
The bursa of Fabricius (BF) is the acknowledged central humoral immune organ in birds. Bursal septpeptide II (BSP-II) is an immunomodulatory bioactive peptide isolated from BF. To understand the effects of BSP-II on immune induction, gene expression profiles of hybridoma cells treated with BSP-II were evaluated. Pathway analysis showed that regulated genes were involved in cytokine-cytokine receptor interactions, T cell receptor signaling pathway, and pathway in cancer. It was observed that BSP-II reduced tumor cells proliferation and stimulated p53 expression. These results indicate potential mechanisms underlying the effects of the humoral immune system on immune induction, including antitumor activities. Our study has provided a novel insight into immunotherapeutic strategies for treating human tumors.
Animals
;
Antineoplastic Agents/*pharmacology
;
Avian Proteins/*pharmacology
;
Bursa of Fabricius/immunology
;
Cell Proliferation/drug effects
;
Chickens/*immunology
;
Hybridomas/drug effects
;
Immunologic Factors/*pharmacology
;
Oligonucleotide Array Sequence Analysis/veterinary
;
Signal Transduction/*drug effects
;
*Transcriptome
3.Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions.
Ying Xiao FU ; Jian Hong GU ; Yi Ran ZHANG ; Xi Shuai TONG ; Hong Yan ZHAO ; Yan YUAN ; Xue Zhong LIU ; Jian Chun BIAN ; Zong Ping LIU
Journal of Veterinary Science 2013;14(4):405-412
The purpose of this study was to determine whether osteoprotegerin (OPG) could affect osteoclat differentiation and activation under serum-free conditions. Both duck embryo bone marrow cells and RAW264.7 cells were incubated with macrophage colony stimulatory factor (M-CSF) and receptor activator for nuclear factor kappaB ligand (RANKL) in serum-free medium to promote osteoclastogenesis. During cultivation, 0, 10, 20, 50, and 100 ng/mL OPG were added to various groups of cells. Osteoclast differentiation and activation were monitored via tartrate-resistant acid phosphatase (TRAP) staining, filamentous-actin rings analysis, and a bone resorption assay. Furthermore, the expression osteoclast-related genes, such as TRAP and receptor activator for nuclear factor kappaB (RANK), that was influenced by OPG in RAW264.7 cells was examined using real-time polymerase chain reaction. In summary, findings from the present study suggested that M-CSF with RANKL can promote osteoclast differentiation and activation, and enhance the expression of TRAP and RANK mRNA in osteoclasts. In contrast, OPG inhibited these activities under serum-free conditions.
Acid Phosphatase/genetics/metabolism
;
Animals
;
Avian Proteins/*pharmacology
;
Bone Marrow Cells/drug effects/*metabolism
;
Cells, Cultured
;
Ducks
;
Embryo, Nonmammalian/drug effects/metabolism
;
Isoenzymes/genetics/metabolism
;
Macrophage Colony-Stimulating Factor/metabolism
;
Osteoclasts/cytology/*drug effects/*metabolism
;
Osteoprotegerin/*pharmacology
;
RANK Ligand/metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptor Activator of Nuclear Factor-kappa B/genetics/metabolism